Int J Stomatol ›› 2021, Vol. 48 ›› Issue (4): 426-432.doi: 10.7518/gjkq.2021063

• Original Articles • Previous Articles     Next Articles

Alveolar bone morphology of anterior teeth areas in patients with high-angle skeletal Class Ⅱ open bite

Wu Chunlan(),Tang Hua,Chen Jun()   

  1. Dept. of Orthodontics, Affiliated Stomatological Hospital, Chongqing Medical University & Chongqing Key Laboratory of Oral Diseases and Biomedical Science & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
  • Received:2020-11-20 Revised:2021-04-14 Online:2021-07-01 Published:2021-06-30
  • Contact: Jun Chen E-mail:wuchunlan@stu.cqmu.edu.cn;chenerye@hospital.cqmu.edu.cn

Abstract:

Objective This study aimed to explore the differences in alveolar bone morphology of anterior teeth areas among patients with high-angle skeletal ClassⅡopen bite patients and high-angle skeletal ClassⅡnormal overbite by u-sing cone-beam computed tomography. Methods Fifty-eight untreated patients (29 anterior open bite patients and 29 normal overbite patients) with high-angle skeletal ClassⅡmalocclusion were selected. The vertical bone level and the width of the alveolar bone were measured in the midsagittal plane of the teeth by Dolphin software. The differences in alveolar bone morphology were compared between the two groups, and the correlation between the alveolar bone morphology and overbite was explored. Results Differences in alveolar bone morphology between patients with open bite and those with normal overbite were identified, and such differences primarily affected the lingual/palatal sides of the vertical bone level and the width of the alveolar bone. The vertical bone level on the lingual/palatal sides of most incisors in the open bite group was statistically lower than those in the control group, and the width of the alveolar bone on the lingual/palatal sides and the apical level was statistically thin. In the correlation analysis, a different degree of positive correlation was observed between the overbite and alveolar bone thickness at different sites of different teeth, whereas overbite was negatively related to the vertical bone level of maxillary incisors and mandibular central incisors. Conclusion The vertical bone level and thickness of the alveolar bone on the lingual/palatal sides were significantly low and thin in the high-angle skeletal ClassⅡopen bite patients, and caution should be taken in the treatment of these patients, particularly the torque of incisors and the backward movement of anterior teeth, to avoid root resorption, alveolar bone dehiscence, and fenestration in the upper and lower incisors.

Key words: anterior open bite, incisor, alveolar bone morphology, cone beam computed tomography

CLC Number: 

  • R783.5

TrendMD: 

Fig 1

Three-dimensional location of root length"

Fig 2

Diagram of the width of alveolar bone measurement"

Fig 3

Diagram of the vertical bone level of alveolar bone measurement"

Tab 1

Comparison of vertical bone level of maxillary and mandibular incisors between open bite group and control group"

牙位 唇侧牙槽骨附着高度 舌/腭侧牙槽骨附着高度
开牙合组/mm 对照组/mm P 开牙合组/mm 对照组/mm P
上颌侧切牙 1.55(1.00~2.17) 1.45(1.02~1.90) 0.588 1.45(0.90~3.97) 0.80(0.70~0.97) 0.000**
上颌中切牙 1.10(1.00~1.50) 1.40(1.00~1.90) 0.269 1.00(0.87~1.42) 0.90(0.80~1.00) 0.044*
下颌侧切牙 1.30(0.90~1.90) 1.30(1.00~1.90) 0.476 1.50(1.00~2.70) 1.50(1.10~2.00) 0.977
下颌中切牙 1.50(1.10~2.00) 1.55(1.00~1.92) 0.497 2.00(1.60~4.00) 1.90(1.45~2.10) 0.028*

Tab 2

Comparison of width of alveolar bone of maxillary incisors between open bite group and control group"

位置 上颌中切牙 上颌侧切牙
开牙合组/mm 对照组/mm P 开牙合组/mm 对照组/mm P
唇侧2 mm 0.70(0.47~1.00) 0.80(0.30~1.15) 0.530 0.60(0.23~0.98) 0.75(0.23~1.08) 0.795
唇侧4 mm 0.90(0.60~1.10) 1.20(0.95~1.50) 0.000** 0.70±0.40 0.75±0.49 0.676
唇侧6 mm 0.80(0.40~1.02) 1.10(0.65~1.20) 0.022* 0.30(0.20~0.57) 0.20(0.10~0.60) 0.046*
唇侧根尖 1.90(1.70~2.10) 2.10(1.70~2.45) 0.195 1.76±0.86 1.63±0.76 0.517
腭侧2 mm 0.80(0.50~1.10) 1.40(1.05~1.60) 0.000** 0.40(0.00~0.80) 1.15(0.90~1.40) 0.000**
腭侧4 mm 1.45(1.20~1.90) 2.10(1.70~2.40) 0.000** 1.10(0.15~1.30) 1.75(1.40~2.20) 0.000**
腭侧6 mm 2.10(1.70~2.50) 2.90(2.40~3.75) 0.000** 1.50(1.20~1.70) 2.40(2.00~3.17) 0.000**
腭侧根尖 5.95±1.45 7.84±1.53 0.000** 4.82±1.10 6.78±2.05 0.000**
总根尖(腭侧+唇侧) 7.89±1.07 9.90±1.46 0.000** 6.52±1.58 8.41±1.82 0.000**

Tab 3

Comparison of width of alveolar bone of mandibular incisors between open bite group and control group"

位置 下颌中切牙 下颌侧切牙
开牙合组/mm 对照组/mm P 开牙合组/mm 对照组/mm P
唇侧2 mm 0.35(0.10~0.50) 0.50(0.20~1.10) 0.102 0.30(0.20~0.50) 0.40(0.20~1.00) 0.329
唇侧4 mm 0.30(0.20~0.40) 0.40(0.20~0.75) 0.017* 0.20(0.20~0.40) 0.40(0.20~0.80) 0.019*
唇侧6 mm 0.40(0.20~0.50) 0.35(0.20~0.52) 0.897 0.30(0.20~0.40) 0.20(0.20~0.30) 0.477
唇侧根尖 3.01±0.93 3.32±1.10 0.182 3.40(2.60~4.20) 3.30(2.55~3.65) 0.624
舌侧2mm 0.00(0.00~0.30) 0.15(0.00~0.42) 0.209 0.40(0.00~0.60) 0.40(0.00~0.70) 0.503
舌侧4mm 0.40(0.10~0.90) 1.00(0.70~1.40) 0.000** 0.90(0.40~1.20) 1.40(1.10~1.75) 0.000**
舌侧6mm 0.92±0.55 1.27±0.52 0.005** 1.31±0.49 1.65±0.50 0.006**
舌侧根尖 3.69±0.79 3.77±0.79 0.634 4.00(3.40~4.50) 4.20(3.65~4.75) 0.259
总根尖(舌侧+唇侧) 6.53±0.77 7.10±0.23 0.107 6.80(5.32~8.20) 7.60(7.05~8.10) 0.175

Tab 4

Pearson correlation coefficients between the overbite and width of alveolar bone"

位置 上颌侧
切牙
上颌中
切牙
下颌侧
切牙
下颌中
切牙
唇侧2 mm 0.069 0.027 0.166 0.198
唇侧4 mm -0.028 0.433** 0.283* 0.283*
唇侧6 mm -0.168 0.245* -0.002 -0.033
唇侧根尖 0.057 0.038 0.005 0.183
舌/腭侧2 mm 0.497** 0.431** 0.012 0.114
舌/腭侧4 mm 0.472** 0.434** 0.366** 0.402**
舌/腭侧6 mm 0.395** 0.466** 0.180 0.209
舌/腭侧根尖 0.351** 0.532** -0.019 -0.037
总根尖(唇侧+舌/腭侧) 0.340** 0.557** 0.189 0.156
唇侧牙槽骨高度 -0.223 -0.026 0.030 -0.222
舌/腭侧牙槽骨高度 -0.449** -0.227 -0.034 -0.319**
[1] 傅民魁. 口腔正畸专科教程[M]. 北京: 人民卫生出版社, 2007: 422-430.
Fu MK. Textbook of orthodontics[M]. Beijing: Peo-ple’s Medical Publishing House, 2007: 422-430.
[2] Lin LH, Huang GW, Chen CS. Etiology and treatment modalities of anterior open bite malocclusion[J]. J Exp Clin Med, 2013,5(1):1-4.
[3] Foosiri P, Mahatumarat K, Panmekiate S. Relationship between mandibular symphysis dimensions and mandibular anterior alveolar bone thickness as asses-sed with cone-beam computed tomography[J]. Dent Press J Orthod, 2018,23(1):54-62.
[4] Srebrzyńska-Witek A, Koszowski R, Różyło-Kalinowska I. Relationship between anterior mandibular bone thickness and the angulation of incisors and canines‒a CBCT study[J]. Clin Oral Investig, 2018,22(3):1567-1578.
doi: 10.1007/s00784-017-2255-3 pmid: 29063382
[5] Nahás-Scocate AC, de Siqueira Brandão A, Patel MP, et al. Bone tissue amount related to upper incisors inclination[J]. Angle Orthod, 2014,84(2):279-285.
doi: 10.2319/031213-211.1 pmid: 23883305
[6] Ma J, Huang J, Jiang JH. Morphological analysis of the alveolar bone of the anterior teeth in severe high-angle skeletal Class Ⅱ and Class Ⅲ malocclusions assessed with cone-beam computed tomography[J]. PLoS One, 2019,14(3):e0210461.
doi: 10.1371/journal.pone.0210461
[7] 王光伟, 李伟绪, 张临雪, 等. 不同错牙合类型患者上前牙区牙槽骨厚度比较[J]. 河南医学研究, 2019,28(15):2695-2698.
Wang GW, Li WX, Zhang LX, et al. Comparison on alveolar bone thickness of upper anterior teeth in patients with different malocclusion types[J]. Henan Med Res, 2019,28(15):2695-2698.
[8] Timock AM, Cook V, McDonald T, et al. Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging[J]. Am J Orthod Dentofacial Orthop, 2011,140(5):734-744.
doi: 10.1016/j.ajodo.2011.06.021 pmid: 22051495
[9] 许天民, 刘妍, 江久汇, 等. 正畸内收上切牙对上颌牙槽骨改建的临床研究[J]. 实用口腔医学杂志, 2004,20(4):431-433.
Xu TM, Liu Y, Jiang JH, et al. Cephalometric study of alveolar remodeling during incisor retraction[J]. J Pract Stomatol, 2004,20(4):431-433.
[10] 季海宁, 梁源, 隋珂, 等. 成人骨性Ⅱ类错牙合不同垂直骨面型前牙区牙槽骨形态的CBCT研究[J]. 实用口腔医学杂志, 2016,32(2):268-272.
Ji HN, Liang Y, Sui K, et al. A cone-beam CT study on alveolar bone morphology in anterior teeth area of adult skeletal ClassⅡmalocclusion subjects with different vertical skeletal types[J]. J Pract Stomatol, 2016,32(2):268-272.
[11] Harris EF, Butler ML. Patterns of incisor root resorption before and after orthodontic correction in cases with anterior open bites[J]. Am J Orthod Dentofacial Orthop, 1992,101(2):112-119.
doi: 10.1016/0889-5406(92)70002-R
[12] 雷琦. 安氏Ⅱ类1分类和2分类上中切牙牙槽骨形态的CBCT分析[D]. 太原: 山西医科大学, 2019.
Lei Q. Alveolar bone morphology analysis of upper central incisor in ClassⅡdivision 1 and division 2 by cone-beam computed tomography[D]. Taiyuan: Shanxi Medical University, 2019.
[13] Enokida M, Kaneko S, Yanagishita M, et al. Influen-ce of occlusal stimuli on the remodelling of alveolar bone in a rat hypofunction-recovery model[J]. J Oral Biosci, 2005,47(4):321-334.
doi: 10.1016/S1349-0079(05)80015-5
[14] Liu J, Jin ZL, Li Q. Effect of occlusal hypofunction and its recovery on the three-dimensional architecture of mandibular alveolar bone in growing rats[J]. J Surg Res, 2015,193(1):229-236.
doi: 10.1016/j.jss.2014.07.015
[15] Hayashi H, Terao A, Kunimatsu R, et al. Effects of a low level laser on periodontal tissue in hypofunctional teeth[J]. PLoS One, 2014,9(6):e100066.
doi: 10.1371/journal.pone.0100066
[16] Motokawa M, Kaku M, Matsuda Y, et al. Effects of occlusal hypofunction and its recovery on PDL structure and expression of VEGF and bFGF in rats[J]. Clin Oral Investig, 2015,19(4):929-935.
doi: 10.1007/s00784-014-1310-6 pmid: 25209593
[17] Mavropoulos A, Odman A, Ammann P, et al. Rehabilitation of masticatory function improves the alveolar bone architecture of the mandible in adult rats[J]. Bone, 2010,47(3):687-692.
doi: 10.1016/j.bone.2010.06.025 pmid: 20601301
[18] Motokawa M, Terao A, Karadeniz EI, et al. Effects of long-term occlusal hypofunction and its recovery on the morphogenesis of molar roots and the perio-dontium in rats[J]. Angle Orthod, 2013,83(4):597-604.
doi: 10.2319/081812-661.1
[19] Uehara S, Maeda A, Tomonari H, et al. Relationships between the root-crown ratio and the loss of occlusal contact and high mandibular plane angle in patients with open bite[J]. Angle Orthod, 2013,83(1):36-42.
doi: 10.2319/042412-341.1
[1] Liu Panming,Li Zhengze,Li Junhe,Cui Shuxia.. Cone beam computed tomography study of maxillary sinus volume and oropharyngeal airway volume with diffe-rent vertical skeletal faces in adult skeletal Class Ⅱ patients [J]. Int J Stomatol, 2023, 50(5): 528-537.
[2] Yang Yunan,Liu Peng,Wang Hu,You Meng. Evaluation of maxillary sinusitis with cone beam computed tomography [J]. Int J Stomatol, 2023, 50(3): 302-307.
[3] Liu Xiaolin,Ren Qun,Gao Xiaozhe,Bai Jiuping,Wang Yu,Li Xiangjun.. Clinical data analysis of 458 cases of supernumerary teeth in the upper incisor area [J]. Int J Stomatol, 2023, 50(1): 61-65.
[4] Ye Zelin,Liu Lu,Long Hu,You Meng. Research progress on imaging evaluation and treatment of anterior dilacerated teeth [J]. Int J Stomatol, 2022, 49(2): 173-181.
[5] Liu Lijia,Mao Jing,Long Huan,Pu Yalong,Wang Jun. Research progress on two-dimensional and three-dimensional cephalometric automatic landmarking [J]. Int J Stomatol, 2022, 49(1): 100-108.
[6] Zhou Mengqi,Chen Xuepeng,Fu Baiping. Strategies for preventing alveolar-bone dehiscence and fenestration during orthodontic treatment [J]. Int J Stomatol, 2021, 48(5): 600-608.
[7] Shi Danni,Yang Xin,Wu Jianyong. Research progress of reference coordinate system for three-dimensional cephalometric based on cone beam computed tomography [J]. Int J Stomatol, 2021, 48(4): 398-404.
[8] Wang Lidong,Ma Wen,Fu Shuai,Zhang Changbin,Cui Qingying,Liang Yan,Li Ming. Research and accuracy of different methods of digital occlusal splint fabrication for orthognathic surgery [J]. Int J Stomatol, 2021, 48(2): 156-164.
[9] Wang Ben,Xu Zhezhen,Wei Xi. Application and progress of a digitalized minimally invasive technique in endodontics [J]. Int J Stomatol, 2021, 48(1): 110-118.
[10] Zhang Zihan,Xiong Xin,Wang Jun. Research status and application development of three-dimensional cephalometry [J]. Int J Stomatol, 2020, 47(6): 739-744.
[11] Tang Bei,Zhao Wenjun,Wang Hu,Zheng Guangning,You Meng. Inferior alveolar nerve injury due to apical overfilling: two cases reports [J]. Int J Stomatol, 2020, 47(3): 293-296.
[12] Zhang Tingting,Hu Changhong,Peng Yan,Zhou Wenqiao,Zhang Huicong,Liu Die. Analysis of upper lip profile features in 300 dentate subjects of different ages via three-dimensional measurement of cone beam computed tomography [J]. Int J Stomatol, 2020, 47(2): 182-188.
[13] Li Qi, Huang Shaohong. Cone beam computed tomography study on root and root canal morphology of mandibular second permanent molars in Guangfu population in Lingnan area [J]. Int J Stomatol, 2019, 46(6): 640-649.
[14] Liu Xiaohua, Wang Enbo. Application progress on cone beam computed tomography imaging localization in extraction of embedded supernumerary teeth in children [J]. Inter J Stomatol, 2018, 45(3): 295-300.
[15] Yin Yijia, Feng Jie, Luo Mengqi, Han Xianglong. Research progress on the correction of natural head position with three-dimensional stereo-photography [J]. Inter J Stomatol, 2018, 45(3): 301-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .