Inter J Stomatol ›› 2017, Vol. 44 ›› Issue (5): 591-595.doi: 10.7518/gjkq.2017.05.020

• Reviews • Previous Articles     Next Articles

Research progress on the application of graphene oxide in the field of biomedicine

Wang Ting, Ge Shaohua.   

  1. Dept. of Periodontology, Hospital of Stomatology, Shandong University;Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
  • Received:2016-11-13 Revised:2017-06-26 Online:2017-09-01 Published:2017-09-01
  • Supported by:

    ; This study was supported by National Natural Science Foundation of China(81670993, 81371157).


Graphene oxide(GO) is a chemically modified composite material of graphene by oxygen-containing functional groups. In addition to excellent chemical and physical properties of graphene, GO can provide larger surface area, promote stem cell proliferation, osteogenic differentiation, and has unique biocompatibility and antibacterial properties, resulting in broad prospects of application in the field of biomedicine. This article reviews the progress of graphene oxide on drug and protein delivery, bone tissue engineering, anti-inflammatory and antibacterial actions, and the possible toxic and side effects.

Key words: graphene, graphene oxide, drug delivery, tissue engineering, anti-inflammatory action, adverse reaction

CLC Number: 

  • R783.1

[1] Gu M, Liu Y, Chen T, et al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue enginee-ring[J]. Tissue Eng Part B Rev, 2014, 20(5):477-491.
[2] Chowdhury SM, Surhland C, Sanchez Z, et al. Gra-phene nanoribbons as a drug delivery agent for lucan-thone mediated therapy of glioblastoma multiforme [J]. Nanomedicine, 2015, 11(1):109-118.
[3] La WG, Park S, Yoon HH, et al. Delivery of a thera-peutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small, 2013, 9(23): 4051-4060.
[4] La WG, Jin M, Park S, et al. Delivery of bone mor-phogenetic protein-2 and substance P using graphene oxide for bone regeneration[J]. Int J Nanomedicine, 2014, 9(Suppl 1):107-116.
[5] Elkhenany H, Amelse L, Lafont A, et al. Graphene supports in vitro proliferation and osteogenic diffe-rentiation of goat adult mesenchymal stem cells: po-tential for bone tissue engineering[J]. J Appl Toxicol, 2015, 35(4):367-374.
[6] Kalbacova M, Broz A, Kalbac M. Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene[J]. J Biomed Mater Res A, 2012, 100(11):3001-3007.
[7] Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differen-tiation of human mesenchymal stem cells[J]. ACS Nano, 2011, 5(6):4670-4678.
[8] Aryaei A, Jayatissa AH, Jayasuriya AC. The effect of graphene substrate on osteoblast cell adhesion and proliferation[J]. J Biomed Mater Res A, 2014, 102 (9):3282-3290.
[9] Dubey N, Bentini R, Islam I, et al. Graphene: a ver-satile carbon-based material for bone tissue enginee-ring[J]. Stem Cells Int, 2015, 2015:804213.
[10] Kim J, Choi KS, Kim Y, et al. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells[J]. J Biomed Mater Res A, 2013, 101(12):3520-3530.
[11] Kim J, Kim YR, Kim Y, et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells[J]. J Mater Chem B, 2013, 1(7):933-938.
[12] Dinescu S, Ionita M, Pandele AM, et al. In vitro cyto-compatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engi-neering[J]. Biomed Mater Eng, 2014, 24(6):2249- 2256.
[13] Nair M, Nancy D, Krishnan AG, et al. Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite sca-ffolds enhance osteogenic differentiation of human mesenchymal stem cells[J]. Nanotechnology, 2015, 26(16):161001.
[14] Duan S, Yang X, Mei F, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials[J]. J Biomed Mater Res A, 2015, 103 (4):1424-1435.
[15] Crowder SW, Prasai D, Rath R, et al. Three-dimen-sional graphene foams promote osteogenic differen-tiation of human mesenchymal stem cells[J]. Nano-scale, 2013, 5(10):4171-4176.
[16] Guilak F, Cohen DM, Estes BT, et al. Control of stem cell fate by physical interactions with the extrace-llular matrix[J]. Cell Stem Cell, 2009, 5(1):17-26.
[17] Xie H, Cao T, Gomes J V, et al. Two and three-dimen-sional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells[J]. Carbon, 2015, 93:266-275.
[18] Kanayama I, Miyaji H, Takita H, et al. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide[J]. Int J Nanomedicine, 2014, 9:3363-3373.
[19] La WG, Kwon SH, Lee TJ, et al. The effect of the delivery carrier on the quality of bone formed via bone morphogenetic protein-2[J]. Artif Organs, 2012, 36(7):642-647.
[20] Lee WC, Lim CH, Shi H, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano, 2011, 5(9):7334- 7341.
[21] Li M, Liu Q, Jia Z, et al. Graphene oxide/hydroxya-patite composite coatings fabricated by electropho-retic nanotechnology for biological applications[J]. Carbon, 2014, 67:185-197.
[22] Xie Y, Li H, Zhang C, et al. Graphene-reinforced calcium silicate coatings for load-bearing implants [J]. Biomed Mater, 2014, 9(2):025009.
[23] He J, Zhu X, Qi Z, et al. Killing dental pathogens using antibacterial graphene oxide[J]. ACS Appl Mater Interfaces, 2015, 7(9):5605-5611.
[24] Kulshrestha S, Khan S, Meena R, et al. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans[J]. Biofouling, 2014, 30(10):1281-1294.
[25] Lim HN, Huang NM, Loo CH. Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties[J]. J Non-Crystal Sol, 2012, 358(3):525-530.
[26] Song Q, Jiang Z, Li N, et al. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells[J]. Biomaterials, 2014, 35(25): 6930-6940.
[27] Nanda SS, An SS, Yi DK. Oxidative stress and anti-bacterial properties of a graphene oxide-cystamine nanohybrid[J]. Int J Nanomedicine, 2015, 10:549- 556.
[28] Liu S, Zeng TH, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5(9):6971-6980.
[29] Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nat Nanotechnol, 2013, 8(8):594-601.
[30] Gurunathan S, Han JW, Eppakayala V, et al. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells[J]. Int J Nanomedicine, 2013, 8:1015-1027.
[31] Wang ZG, Zhou R, Jiang D, et al. Toxicity of gra-phene quantum dots in zebrafish embryo[J]. Biomed Environ Sci, 2015, 28(5):341-351.
[32] Chng EL, Pumera M. The toxicity of graphene oxides: dependence on the oxidative methods used[J]. Che-mistry, 2013, 19(25):8227-8235.
[33] Liao KH, Lin YS, Macosko CW, et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts[J]. ACS Appl Mater Interfaces, 2011, 3(7):2607-2615.
[34] Fu C, Liu T, Li L, et al. Effects of graphene oxide on the development of offspring mice in lactation period [J]. Biomaterials, 2015, 40:23-31.
[35] Yang K, Wan J, Zhang S, et al. In vivo pharmacoki-netics, long-term biodistribution, and toxicology of PEGylated graphene in mice[J]. ACS Nano, 2011, 5(1):516-522.
[36] Yan L, Wang Y, Xu X, et al. Can graphene oxide cause damage to eyesight[J]. Chem Res Toxicol, 2012, 25(6):1265-1270.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[3] Wu Jiaxin,Cheng Xingqun,Wu Hongkun.. Clinical application and research progress on hyaluronic acid in the repair of papillary height loss [J]. Int J Stomatol, 2023, 50(3): 347-352.
[4] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[5] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[6] Liang Yi,Pei Xibo,Wan Qianbing. Research progress on the biomedical applications of photosensitive hydrogels [J]. Int J Stomatol, 2022, 49(1): 12-18.
[7] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[8] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[9] Cao Chunling,Han Bing,Wang Xiaoyan. Research progress on hydrogels for pulp regeneration [J]. Int J Stomatol, 2021, 48(2): 192-197.
[10] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[11] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[12] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
[13] Jiang Xiaoge,Wu Jiaxin,Pei Xibo. Research progress on metal-organic frameworks and their complex in biomedical field [J]. Int J Stomatol, 2019, 46(5): 552-557.
[14] Cheng Guoping,Ding Yi,Guo Shujuan. Progress in electrospun fibres as periodontal drug delivery systems [J]. Int J Stomatol, 2019, 46(5): 565-570.
[15] Mei Hongxiang,Zhang Yidan,Zhang Chenghao,Liu Enyan,Chen Hao,Zhao Zhihe,Liao Wen. Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation [J]. Int J Stomatol, 2019, 46(4): 431-436.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .