Int J Stomatol ›› 2020, Vol. 47 ›› Issue (5): 607-615.doi: 10.7518/gjkq.2020022
• Reviews • Previous Articles Next Articles
Sun Jianwei(),Lei Lihong,Tan Jingyi,Chen Lili()
CLC Number:
[1] |
Papapanou PN, Sanz M, Buduneli N, et al. Perio-dontitis: consensus report of workgroup 2 of the 2017 World Workshop on the classification of perio-dontal and peri-implant diseases and conditions[J]. J Periodontol, 2018,89(Suppl 1):S173-S182.
doi: 10.1002/JPER.17-0721 |
[2] |
Soyocak A, Kurt H, Ozgen M, et al. miRNA-146a, miRNA-155 and JNK expression levels in peripheral blood mononuclear cells according to grade of knee osteoarthritis[J]. Gene, 2017,627:207-211.
doi: 10.1016/j.gene.2017.06.027 pmid: 28647559 |
[3] |
De Palma A, Cheleschi S, Pascarelli NA, et al. Hy-drostatic pressure as epigenetic modulator in chon-drocyte cultures: a study on miRNA-155, miRNA-181a and miRNA-223 expression levels[J]. J Biomech, 2018,66:165-169.
doi: 10.1016/j.jbiomech.2017.10.044 pmid: 29150345 |
[4] |
Radović N, Nikolić Jakoba N, Petrović N, et al. MicroRNA-146a and microRNA-155 as novel cre-vicular fluid biomarkers for periodontitis in non-dia-betic and type 2 diabetic patients[J]. J Clin Periodontol, 2018,45(6):663-671.
doi: 10.1111/jcpe.2018.45.issue-6 |
[5] | Mashima R. Physiological roles of miR-155[J]. Im-munology, 2015,145(3):323-333. |
[6] | 李聪聪, 赵金艳, 吴姣, 等. miR-155研究进展[J]. 生物技术通报, 2018,34(11):70-82. |
Li CC, Zhao JY, Wu J , et al. Research progress on miR-155[J]. Biotechnol Bull, 2018,34(11):70-82. | |
[7] |
Gebert LFR, MacRae IJ. Regulation of microRNA function in animals[J]. Nat Rev Mol Cell Biol, 2019,20(1):21-37.
doi: 10.1038/s41580-018-0045-7 pmid: 30108335 |
[8] |
Li N, Cui T, Guo W, et al. MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1[J]. Onco Targets Ther, 2019,12:3181-3196.
doi: 10.2147/OTT.S193097 pmid: 31118671 |
[9] |
Liu F, Kong X, Lv L, et al. TGF-β1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes[J]. Cancer Lett, 2015,359(2):288-298.
doi: 10.1016/j.canlet.2015.01.030 pmid: 25633840 |
[10] |
Liu F, Kong X, Lv L, et al. MiR-155 targets TP53INP1 to regulate liver cancer stem cell acquisition and self-renewal[J]. FEBS Lett, 2015,589(4):500-506.
doi: 10.1016/j.febslet.2015.01.009 pmid: 25601564 |
[11] |
Nishimoto M, Nishikawa S, Kondo N, et al. Progno-stic impact of TP53INP1 gene expression in estrogen receptor α-positive breast cancer patients[J]. Jpn J Clin Oncol, 2019,49(6):567-575.
doi: 10.1093/jjco/hyz029 pmid: 30855679 |
[12] |
Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice[J]. Proc Natl Acad Sci USA, 2006,103(18):7024-7029.
doi: 10.1073/pnas.0602266103 pmid: 16641092 |
[13] |
Wang C, Zhang C, Liu L, et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast pro-liferation and promote fibroblast inflammation during cardiac injury[J]. Mol Ther, 2017,25(1):192-204.
doi: 10.1016/j.ymthe.2016.09.001 pmid: 28129114 |
[14] |
Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis[J]. Arthritis Rheum, 2008,58(4):1001-1009.
doi: 10.1002/art.23386 pmid: 18383392 |
[15] |
Churov AV, Oleinik EK, Knip M. MicroRNAs in rheumatoid arthritis: altered expression and diagno-stic potential[J]. Autoimmun Rev, 2015,14(11):1029-1037.
doi: 10.1016/j.autrev.2015.07.005 pmid: 26164649 |
[16] |
Xie YF, Shu R, Jiang SY, et al. Comparison of micro- RNA profiles of human periodontal diseased and healthy gingival tissues[J]. Int J Oral Sci, 2011,3(3):125-134.
doi: 10.4248/IJOS11046 pmid: 21789961 |
[17] |
Algate K, Haynes DR, Bartold PM, et al. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes[J]. J Periodontal Res, 2016,51(5):549-566.
doi: 10.1111/jre.12339 pmid: 26667183 |
[18] |
Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters’[J]. Trends Mol Med, 2014,20(8):449-459.
doi: 10.1016/j.molmed.2014.06.001 pmid: 25008556 |
[19] |
Baum R, Gravallese EM. Bone as a target organ in rheumatic disease: impact on osteoclasts and osteo-blasts[J]. Clin Rev Allergy Immunol, 2016,51(1):1-15.
doi: 10.1007/s12016-015-8515-6 pmid: 26411424 |
[20] |
Arron JR, Choi Y. Bone versus immune system[J]. Nature, 2000,408(6812):535-536.
doi: 10.1038/35046196 pmid: 11117729 |
[21] |
Tang M, Tian L, Luo G, et al. Interferon-gamma-mediated osteoimmunology[J]. Front Immunol, 2018,9:1508.
doi: 10.3389/fimmu.2018.01508 pmid: 30008722 |
[22] |
Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction[J]. J Exp Med, 2006,203(12):2673-2682.
pmid: 17088434 |
[23] |
Kim YG, Park JW, Lee JM, et al. IL-17 inhibits oste-oblast differentiation and bone regeneration in rat[J]. Arch Oral Biol, 2014,59(9):897-905.
doi: 10.1016/j.archoralbio.2014.05.009 pmid: 24907519 |
[24] | 谭静怡. 不同表型Th17细胞的诱导分化及其特征性分泌因子(IL-17/IFN-γ)在大鼠实验性牙周炎模型中的作用和相关机制研究[D]. 杭州: 浙江大学, 2018. |
Tang JY . Study on different Th17 cell phenotypes differentiation and the effects of their characteristic secretory cytokines (IL-17/IFN-γ) in rats experimental periodontitis model and the associated mechanisms[D]. Hangzhou: Zhejiang University, 2018. | |
[25] | Wang Z, Tan J, Lei L, et al. The positive effects of secreting cytokines IL-17 and IFN-γ on the early-stage differentiation and negative effects on the cal-cification of primary osteoblasts in vitro[J]. Int Im-munopharmacol, 2018,57:1-10. |
[26] |
Bozec A, Zaiss MM, Kagwiria R, et al. T cell cos-timulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan path-way[J]. Sci Transl Med, 2014, 6(235): 235ra60.
doi: 10.1126/scitranslmed.3008487 pmid: 24807555 |
[27] |
Pacifici R. T cells, osteoblasts, and osteocytes: in-teracting lineages key for the bone anabolic and catabolic activities of parathyroid hormone[J]. Ann N Y Acad Sci, 2016,1364:11-24.
doi: 10.1111/nyas.12969 pmid: 26662934 |
[28] |
Luo CY, Wang L, Sun C, et al. Estrogen enhances the functions of CD4+CD25+Foxp3+ regulatory T cells that suppress osteoclast differentiation and bone re-sorption in vitro [J]. Cell Mol Immunol, 2011,8(1):50-58.
doi: 10.1038/cmi.2010.54 pmid: 21200384 |
[29] |
Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signal-ling cross-talk between RANKL and IFN-γ[J]. Nature, 2000,408(6812):600-605.
doi: 10.1038/35046102 pmid: 11117749 |
[30] |
Takayanagi H. Osteoimmunology and the effects of the immune system on bone[J]. Nat Rev Rheumatol, 2009,5(12):667-676.
doi: 10.1038/nrrheum.2009.217 pmid: 19884898 |
[31] | 陈之光, 薛今琦, 付勤. 干扰素-γ在骨免疫系统中作用的研究进展[J]. 中国骨质疏松杂志, 2015,21(3):361-366. |
Chen ZG, Xue LQ, Fu Q . Research progress in the role of IFN-γ in osteoimmunology[J]. Chin J Osteopor, 2015,21(3):361-366. | |
[32] |
Weitzmann MN. Bone and the immune system[J]. Toxicol Pathol, 2017,45(7):911-924.
pmid: 29046115 |
[33] |
Li Y, Toraldo G, Li A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo[J]. Blood, 2007,109(9):3839-3848.
doi: 10.1182/blood-2006-07-037994 pmid: 17202317 |
[34] |
Onal M, Xiong J, Chen X, et al. Receptor activator of nuclear factor κB ligand (RANKL) protein expre-ssion by B lymphocytes contributes to ovariectomy-induced bone loss[J]. J Biol Chem, 2012,287(35):29851-29860.
doi: 10.1074/jbc.M112.377945 pmid: 22782898 |
[35] |
Rivollier A, Mazzorana M, Tebib J, et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment[J]. Blood, 2004,104(13):4029-4037.
doi: 10.1182/blood-2004-01-0041 pmid: 15308576 |
[36] |
Horwood NJ. Macrophage polarization and bone formation: a review[J]. Clin Rev Allergy Immunol, 2016,51(1):79-86.
pmid: 26498771 |
[37] | 罗亚东. Aire通过miR-155调控M1型巨噬细胞极化的研究[D]. 长春: 吉林大学, 2018. |
Luo YD . Aire regulates the polarization of M1 ma-crophages through miR-155[D]. Changchun: Jilin University, 2018. | |
[38] |
He D, Kou X, Luo Q, et al. Enhanced M1/M2 ma-crophage ratio promotes orthodontic root resorption[J]. J Dent Res, 2015,94(1):129-139.
doi: 10.1177/0022034514553817 pmid: 25344334 |
[39] |
Zhang Q, Atsuta I, Liu S, et al. IL-17-mediated M1/M2 macrophage alteration contributes to pathoge-nesis of bisphosphonate-related osteonecrosis of the jaws[J]. Clin Cancer Res, 2013,19(12):3176-3188.
doi: 10.1158/1078-0432.CCR-13-0042 pmid: 23616636 |
[40] |
Wu X, Xu W, Feng X, et al. TNF-a mediated in-flammatory macrophage polarization contributes to the pathogenesis of steroid-induced osteonecrosis in mice[J]. Int J Immunopathol Pharmacol, 2015,28(3):351-361.
pmid: 26197804 |
[41] |
Hajishengallis G, Moutsopoulos NM, Hajishengallis E, et al. Immune and regulatory functions of neutro-phils in inflammatory bone loss[J]. Semin Immunol, 2016,28(2):146-158.
doi: 10.1016/j.smim.2016.02.002 pmid: 26936034 |
[42] |
Söderström K, Stein E, Colmenero P, et al. Natural killer cells trigger osteoclastogenesis and bone des-truction in arthritis[J]. Proc Natl Acad Sci USA, 2010,107(29):13028-13033.
doi: 10.1073/pnas.1000546107 pmid: 20615964 |
[43] |
Terashima A, Okamoto K, Nakashima T, et al. Sepsis-induced osteoblast ablation causes immunodeficiency[J]. Immunity, 2016,44(6):1434-1443.
doi: 10.1016/j.immuni.2016.05.012 pmid: 27317262 |
[44] |
Yu VW, Saez B, Cook C, et al. Specific bone cells produce DLL4 to generate thymus-seeding pro-genitors from bone marrow[J]. J Exp Med, 2015,212(5):759-774.
doi: 10.1084/jem.20141843 pmid: 25918341 |
[45] |
Greenbaum A, Hsu YM, Day RB, et al. CXCL12 in early mesenchymal progenitors is required for hae-matopoietic stem-cell maintenance[J]. Nature, 2013,495(7440):227-230.
doi: 10.1038/nature11926 pmid: 23434756 |
[46] |
Rankin EB, Wu C, Khatri R, et al. The HIF signaling pathway in osteoblasts directly modulates erythro-poiesis through the production of EPO[J]. Cell, 2012,149(1):63-74.
doi: 10.1016/j.cell.2012.01.051 pmid: 22464323 |
[47] |
Visnjic D, Kalajzic I, Gronowicz G, et al. Condi-tional ablation of the osteoblast lineage in Col2.3de-ltatk transgenic mice[J]. J Bone Miner Res, 2001,16(12):2222-2231.
doi: 10.1359/jbmr.2001.16.12.2222 pmid: 11760835 |
[48] |
Visnjic D, Kalajzic Z, Rowe DW, et al. Hemato-poiesis is severely altered in mice with an induced osteoblast deficiency[J]. Blood, 2004,103(9):3258-3264.
doi: 10.1182/blood-2003-11-4011 pmid: 14726388 |
[49] |
Yamazaki S, Ema H, Karlsson G, et al. Nonmyelina-ting Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche[J]. Cell, 2011,147(5):1146-1158.
doi: 10.1016/j.cell.2011.09.053 pmid: 22118468 |
[50] |
Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor[J]. Nature, 2006,439(7076):599-603.
pmid: 16382241 |
[51] |
Lymperi S, Ersek A, Ferraro F, et al. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo[J]. Blood, 2011,117(5):1540-1549.
pmid: 21131587 |
[52] |
Cain CJ, Rueda R, McLelland B, et al. Absence of sclerostin adversely affects B-cell survival[J]. J Bone Miner Res, 2012,27(7):1451-1461.
doi: 10.1002/jbmr.1608 pmid: 22434688 |
[53] | Fulzele K, Krause DS, Panaroni C, et al. Myelo-poiesis is regulated by osteocytes through Gsαdepen-dent signaling[J]. Blood, 2013,121(6):930-939. |
[54] | 孟焕新. 牙周病学[M]. 4版. 北京: 人民卫生出版社, 2016: 96-98. |
Meng HX. Periodontology[M]. 4th ed. Beijing: People’s Medical Publishing House, 2016: 96-98. | |
[55] |
Tao Y, Ai R, Hao Y, et al. Role of miR-155 in immune regulation and its relevance in oral lichen planus[J]. Exp Ther Med, 2019,17(1):575-586.
doi: 10.3892/etm.2018.7019 pmid: 30651838 |
[56] |
Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function[J]. Science, 2007,316(5824):608-611.
doi: 10.1126/science.1139253 pmid: 17463290 |
[57] |
Thai TH, Calado DP, Casola S, et al. Regulation of the germinal center response by microRNA-155[J]. Science, 2007,316(5824):604-608.
doi: 10.1126/science.1141229 pmid: 17463289 |
[58] | Zhang X, Hua F, Yang Z, et al. Enhancement of im-munoregulatory function of modified bone marrow mesenchymal stem cells by targeting SOCS1[J]. Bio-med Res Int, 2018,2018:3530647. |
[59] | Fan F, Shi P, Liu M, et al. Lactoferrin preserves bone homeostasis by regulating the RANKL/RANK/OPG pathway of osteoimmunology[J]. Food Funct, 2018,9(5):2653-2660. |
[60] |
Ujiie Y, Karakida T, Yamakoshi Y, et al. Interleukin-4 released from human gingival fibroblasts reduces osteoclastogenesis[J]. Arch Oral Biol, 2016,72:187-193.
doi: 10.1016/j.archoralbio.2016.08.024 pmid: 27608363 |
[61] |
Zhang L, Ding Y, Rao GZ, et al. Effects of IL-10 and glucose on expression of OPG and RANKL in human periodontal ligament fibroblasts[J]. Braz J Med Biol Res, 2016,49(4):e4324.
doi: 10.1590/1414-431X20154324 pmid: 27074164 |
[62] |
Yao R, Ma YL, Liang W, et al. MicroRNA-155 mo-dulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1[J]. PLoS One, 2012,7(10):e46082.
doi: 10.1371/journal.pone.0046082 pmid: 23091595 |
[63] |
Dunand-Sauthier I, Irla M, Carnesecchi S, et al. Re-pression of arginase-2 expression in dendritic cells by microRNA-155 is critical for promoting T cell proliferation[J]. J Immunol, 2014,193(4):1690-1700.
doi: 10.4049/jimmunol.1301913 pmid: 25009204 |
[64] |
Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macro-phages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor α1 (IL13Rα1)[J]. J Biol Chem, 2011,286(3):1786-1794.
doi: 10.1074/jbc.M110.169367 pmid: 21097505 |
[65] |
Zhang Y, Mei H, Chang X, et al. Adipocyte-derived microvesicles from obese mice induce M1 macro-phage phenotype through secreted miR-155[J]. J Mol Cell Biol, 2016,8(6):505-517.
doi: 10.1093/jmcb/mjw040 pmid: 27671445 |
[66] |
Li B. MicroRNA regulation in osteogenic and adi-pogenic differentiation of bone mesenchymal stem cells and its application in bone regeneration[J]. Curr Stem Cell Res Ther, 2018,13(1):26-30.
doi: 10.2174/1574888X12666170605112727 pmid: 28578644 |
[67] |
Hou Q, Huang Y, Liu Y, et al. Profiling the miRNA-mRNA-lncRNA interaction network in MSC osteo-blast differentiation induced by (+)-cholesten-3-one[J]. BMC Genomics, 2018,19(1):783.
pmid: 30373531 |
[68] |
Gu Y, Ma L, Song L, et al. miR-155 inhibits mouse osteoblast differentiation by suppressing SMAD5 expression[J]. Biomed Res Int, 2017,2017:1893520.
pmid: 28473977 |
[69] |
Liu H, Zhong L, Yuan T, et al. MicroRNA-155 inhibits the osteogenic differentiation of mesenchymal stem cells induced by BMP9 via downregulation of BMP signaling pathway[J]. Int J Mol Med, 2018,41(6):3379-3393.
doi: 10.3892/ijmm.2018.3526 pmid: 29512689 |
[70] |
Asagiri M, Takayanagi H. The molecular understan-ding of osteoclast differentiation[J]. Bone, 2007,40(2):251-264.
doi: 10.1016/j.bone.2006.09.023 pmid: 17098490 |
[71] |
Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis[J]. J Immunol Res, 2015,2015:615486.
doi: 10.1155/2015/615486 pmid: 26065002 |
[72] |
Sul OJ, Sung YB, Rajasekaran M, et al. MicroRNA- 155 induces autophagy in osteoclasts by targeting transforming growth factor β-activated kinase 1- binding protein 2 upon lipopolysaccharide stimulation[J]. Bone, 2018,116:279-289.
doi: 10.1016/j.bone.2018.08.014 pmid: 30144578 |
[73] |
Zhao H, Zhang J, Shao H, et al. Transforming growth factor β1/Smad4 signaling affects osteoclast dif-ferentiation via regulation of miR-155 expression[J]. Mol Cells, 2017,40(3):211-221.
doi: 10.14348/molcells.2017.2303 pmid: 28359146 |
[74] |
Zhang J, Zhao H, Chen J, et al. Interferon-β-induced miR-155 inhibits osteoclast differentiation by targe-ting SOCS1 and MITF[J]. FEBS Lett, 2012,586(19):3255-3262.
doi: 10.1016/j.febslet.2012.06.047 |
[75] |
Jing W, Zhang X, Sun W, et al. CRISPR/CAS9-mediated genome editing of miRNA-155 inhibits proinflammatory cytokine production by RAW264.7 cells[J]. Biomed Res Int, 2015,2015:326042.
doi: 10.1155/2015/326042 pmid: 26697483 |
[76] |
Hajishengallis G, Darveau RP, Curtis MA. The key-stone-pathogen hypojournal[J]. Nat Rev Microbiol, 2012,10(10):717-725.
doi: 10.1038/nrmicro2873 pmid: 22941505 |
[77] |
Xie Y, Sun M, Xia Y, et al. An RNA-seq screen of P. gingivalis LPS treated human gingival fibroblasts[J]. Arch Oral Biol, 2018,88:77-84.
doi: 10.1016/j.archoralbio.2018.01.002 pmid: 29407755 |
[78] | Nayar G, Gauna A, Chukkapalli S, et al. Polymicro-bial infection alter inflammatory microRNA in rat salivary glands during periodontal disease[J]. Anae-robe, 2016,38:70-75. |
[79] |
Stoecklin-Wasmer C, Guarnieri P, Celenti R, et al. MicroRNAs and their target genes in gingival tissues[J]. J Dent Res, 2012,91(10):934-940.
doi: 10.1177/0022034512456551 pmid: 22879578 |
[80] |
Chen SC, Constantinides C, Kebschull M, et al. MicroRNAs regulate cytokine responses in gingival epithelial cells[J]. Infect Immun, 2016,84(12):3282-3289.
doi: 10.1128/IAI.00263-16 pmid: 27600506 |
[81] |
Zheng Y, Dong C, Yang J, et al. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019,234(11):20662-20674.
pmid: 31016751 |
[82] |
Lim HW, Kang SG, Ryu JK, et al. SIRT1 deacety-lates RORγt and enhances Th17 cell generation[J]. J Exp Med, 2015,212(5):607-617.
doi: 10.1084/jem.20132378 pmid: 25918343 |
[83] |
Garlet GP, Cardoso CR, Campanelli AP, et al. Ex-pression of suppressors of cytokine signaling in dis-eased periodontal tissues: a stop signal for disease progression[J]. J Periodontal Res, 2006,41(6):580-584.
doi: 10.1111/j.1600-0765.2006.00908.x pmid: 17076785 |