Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (3): 340-345.doi: 10.7518/gjkq.2018.03.018

• Reviews • Previous Articles     Next Articles

Research progress on synthetic nanosilicates in bone tissue engineering

Liang Xinyu, Shi Jiabo, Chen Wenchuan, Zhu Zhimin   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics 1, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-07-12 Revised:2017-12-22 Published:2018-05-08

Abstract: Synthetic nanosilicates are clay nanoparticles that have a cellular-level size, distinct charged and layered structure, and high surface-to-volume ratio, which enhances their interactions with proteins, cells, and polymers. Recently, researchers have focused on the implications of using synthetic nanosilicates in bone tissue engineering to understand their physicochemical and biological properties. The scope of this review includes the well-established use of synthetic nanosilicates for the adjustment of cell functions during bone tissue engineering. The interactions of synthetic nanosilicates with growth factors enable controlled delivery, and their mechanical or biological properties are enhanced when they interact matrix materials. This review is useful to future studies on synthetic nanosilicates.

Key words: synthetic nanosilicates, bone tissue engineering, osteoinduction, carrier, matrix material, synthetic nanosilicates, bone tissue engineering, osteoinduction, carrier, matrix material

CLC Number: 

  • R783.1

TrendMD: 
[1] Nazirkar G, Singh S, Dole V, et al.Effortless effort in bone regeneration: a review[J]. J Int Oral Health, 2014, 6(3):120-124.
[2] Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE.Scaffold design for bone regeneration[J]. J Nanosci Nanotechnol, 2014, 14(1):15-56.
[3] Amini AR, Laurencin CT, Nukavarapu SP.Bone tissue engineering: recent advances and challenges[J]. Crit Rev Biomed Eng, 2012, 40(5):363-408.
[4] Alford AI, Kozloff KM, Hankenson KD.Extracellular matrix networks in bone remodeling[J]. Int J Biochem Cell Biol, 2015, 65:20-31.
[5] Gaharwar AK, Mihaila SM, Swami A, et al.Bioac-tive silicate nanoplatelets for osteogenic differentia-tion of human mesenchymal stem cells[J]. Adv Mater Weinheim, 2013, 25(24):3329-3336.
[6] Mihaila SM, Gaharwar AK, Reis RL, et al.The os-teogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets[J]. Biomaterials, 2014, 35(33):9087-9099.
[7] Chimene D, Alge DL, Gaharwar AK.Two-dimen-sional nanomaterials for biomedical applications: emerging trends and future prospects[J]. Adv Mater Weinheim, 2015, 27(45):7261-7284.
[8] Wegst UG, Bai H, Saiz E, et al.Bioinspired struc-tural materials[J]. Nat Mater, 2015, 14(1):23-36.
[9] Dawson JI, Oreffo RO.Clay: new opportunities for tissue regeneration and biomaterial design[J]. Adv Mater Weinheim, 2013, 25(30):4069-4086.
[10] Kerativitayanan P, Carrow JK, Gaharwar AK.Nano-materials for engineering stem cell responses[J]. Adv Healthc Mater, 2015, 4(11):1600-1627.
[11] Xu M, Liang T, Shi M, et al.Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5): 3766-3798.
[12] Cummins HZ.Liquid, glass, gel: the phases of co-lloidal laponite[J]. J Non-Cryst Sol, 2007, 353(41): 3891-3905.
[13] Mongondry P, Tassin JF, Nicolai T.Revised state diagram of laponite dispersions[J]. J Colloid Inter-face Sci, 2005, 283(2):397-405.
[14] Dawson JI, Kanczler JM, Yang XB, et al.Clay gels for the delivery of regenerative microenvironments[J]. Adv Mater Weinheim, 2011, 23(29):3304-3308.
[15] Campbell ID, Humphries MJ.Integrin structure, activation, and interactions[J]. Cold Spring Harb Perspect Biol, 2011, 3(3). doi:10.1101/cshperspect.a004994.
[16] Motskin M, Wright DM, Muller K, et al.Hydroxya-patite nano and microparticles: correlation of particle properties with cytotoxicity and biostability[J]. Bio-materials, 2009, 30(19):3307-3317.
[17] Park MVDZ, Annema W, Salvati A, et al.In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles[J]. Toxicol Appl Phar, 2009, 240(1):108-116.
[18] Napierska D, Thomassen LC, Rabolli V, et al.Size-dependent cytotoxicity of monodisperse silica nano-particles in human endothelial cells[J]. Small, 2009, 5(7):846-853.
[19] Gaharwar AK, Kishore V, Rivera C, et al.Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differen-tiation of human mesenchymal stem cells[J]. Ma-cromol Biosci, 2012, 12(6):779-793.
[20] Gaharwar AK, Schexnailder PJ, Kline BP, et al.As-sessment of using laponite cross-linked poly (ethy-lene oxide) for controlled cell adhesion and minera-lization[J]. Acta Biomater, 2011, 7(2):568-577.
[21] Wang C, Wang S, Li K, et al.Preparation of laponite bioceramics for potential bone tissue engineering applications[J]. PLoS One, 2014, 9(6):e99585.
[22] Chang CW, van Spreeuwel A, Zhang C, et al. PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold[J]. Soft Matter, 2010, 6(20):5157-5164.
[23] Gaharwar AK, Schexnailder P, Kaul V, et al.Highly extensible bio-nanocomposite films with direction-dependent properties[J]. MAdv Funct Mater, 2010(3): 429-436.
[24] Schexnailder PJ, Gaharwar AK, Bartlett RL 2nd, et al. Tuning cell adhesion by incorporation of charged silicate nanoparticles as cross-linkers to polyethylene oxide[J]. Macromol Biosci, 2010, 10(12):1416-1423.
[25] Takahashi T, Yamada Y, Kataoka K, et al.Prepara-tion of a novel PEG-clay hybrid as a DDS material: dispersion stability and sustained release profiles[J]. J Control Release, 2005, 107(3):408-416.
[26] Fasting C, Schalley CA, Weber M, et al.Multiva-lency as a chemical organization and action principle[J]. Angew Chem Int Ed Engl, 2012, 51(42):10472-10498.
[27] Owens DE 3rd, Peppas NA. Opsonization, biodistri-bution, and pharmacokinetics of polymeric nano-particles[J]. Int J Pharm, 2006, 307(1):93-102.
[28] Wheeler PA, Wang J, Baker J, et al.Synthesis and characterization of covalently functionalized laponite clay[J]. Chem Mater, 2005, 17(11):3012-3018.
[29] Murua A, Portero A, Orive G, et al.Cell microencap-sulation technology: towards clinical application[J]. J Control Release, 2008, 132(2):76-83.
[30] Luginbuehl V, Meinel L, Merkle HP, et al.Localized delivery of growth factors for bone repair[J]. Eur J Pharm Biopharm, 2004, 58(2):197-208.
[31] Baker SE, Sawvel AM, Zheng N, et al.Controlling bioprocesses with inorganic surfaces: layered clay hemostatic agents[J]. Chem Mater, 2007, 19(18): 4390-4392.
[32] Ekenseair AK, Boere KW, Tzouanas SN, et al.Struc-ture-property evaluation of thermally and che-mically gelling injectable hydrogels for tissue en-gineering[J]. Biomacromolecules, 2012, 13(9):2821-2830.
[33] Gaharwar AK, Avery RK, Assmann A, et al.Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage[J]. ACS Nano, 2014, 8(10):9833-9842.
[34] Lu HD, Soranno DE, Rodell CB, et al.Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels[J]. Adv Healthc Mater, 2013, 2(7):1028-1036.
[35] Chen S, Osaka A, Ikoma T, et al.Fabrication, mi-crostructure, and BMP-2 delivery of novel biode-gradable and biocompatible silicate-collagen hybrid fibril sheets[J]. J Mater Chem, 2011, 21(29):10942-10948.
[36] Slaughter BV, Khurshid SS, Fisher OZ, et al.Hydro-gels in regenerative medicine[J]. Adv Mater Wein-heim, 2009, 21(32/33):3307-3329.
[37] Place ES, Evans ND, Stevens MM.Complexity in biomaterials for tissue engineering[J]. Nat Mater, 2009, 8(6):457-470.
[38] Haraguchi K, Takehisa T, Fan S.Effects of clay content on the properties of nanocomposite hydro-gels composed of poly(N-isopropylacrylamide) and clay[J]. Macromolecules, 2002, 35(27):10162-10171.
[39] Gaharwar AK, Peppas NA, Khademhosseini A.Nanocomposite hydrogels for biomedical applica-tions[J]. Biotechnol Bioeng, 2014, 111(3):441-453.
[40] Xavier JR, Thakur T, Desai P, et al.Bioactive nano-engineered hydrogels for bone tissue engineering: a growth-factor-free approach[J]. ACS Nano, 2015, 9(3):3109-3118.
[1] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[2] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[3] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[4] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[5] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
[6] Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu. Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds [J]. Inter J Stomatol, 2018, 45(5): 603-610.
[7] Zhou Jie, Wang Ying, Zhang Lei, Wu Tingting, Zhou Yong, Zou Duohong. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 280-285.
[8] Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350.
[9] Zhang Jia, Liu Zhonghao. Research progress on strontium in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(1): 50-54.
[10] Xiong Hang, Xie Zhigang, Bao Jibo. Basic properties of the demineralization of dentin matrix and preparation [J]. Inter J Stomatol, 2016, 43(1): 90-.
[11] Zheng Jianmao, Mao Xueli, Ling Junqi.. Research progress on the Mg-based material scaffolds and its application in animal bone tissue engineering [J]. Int J Stomatol, 2015, 42(6): 720-723.
[12] Li Simin1, Guo Liangwei1, Zhou Jin2, Gao Yunfei1. Study of repairing the bone defect with platelet-rich plasma/alginate sustained release composites [J]. Inter J Stomatol, 2014, 41(5): 546-551.
[13] Si Jiawen1, Guo Lihe2, Shen Guofang1. Biological characteristics and osteogenic differentiation of amniotic epithelial cells [J]. Inter J Stomatol, 2014, 41(5): 575-578.
[14] Zhu Xiaojing, Wang Yan. Research progress on co-deposition of calcium phosphate with bioactive molecules on titanium implant surface [J]. Inter J Stomatol, 2014, 41(5): 617-620.
[15] Tang Yuxin1, Jin Han1, Shi Ce1, Zhu Yang1, Wang Dandan1, Wang He1, Lin Chongtao2, Sun Hongchen1.. Adipose-derived stem cells and their importance to the regulatory mechanism of osteoblast differentiation [J]. Inter J Stomatol, 2014, 41(4): 418-423.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .