国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 556-562.doi: 10.7518/gjkq.2021099
Liu Jiacheng1(),Meng Zhaosong2,Li Hongjie1,Sui Lei3(
)
摘要:
卵泡抑素(FST)是一种由垂体、肝、骨等多种组织合成分泌的单链糖蛋白,广泛分布于人体组织中,具有多种生理病理功能。体内外实验证实FST在炎症、骨损伤、肌肉萎缩等方面均有治疗价值。FST在维持口腔颌面部组织内环境稳态中发挥了关键作用,具有治疗口腔炎症、颌骨损伤等疾病的潜在价值,对牙齿、唇、腭、颌骨等软硬组织的发育也非常重要。FST在口腔颌面部上皮和间充质组织中均有表达,通过结合激活素和骨形态发生蛋白拮抗转化生长因子β信号通路,参与调控口腔颌面部的组织发育和相关疾病的发生发展。本文着重阐述FST在口腔颌面部发育及疾病中的作用、机制和应用前景,旨在为其在口腔医学领域的进一步研究和临床应用奠定基础。
中图分类号:
[1] |
Rajput SK, Yang C, Ashry M, et al. Role of bone morphogenetic protein signaling in bovine early embryonic development and stage specific embryotro-pic actions of follistatin[J]. Biol Reprod, 2020, 102(4):795-805.
doi: 10.1093/biolre/ioz235 |
[2] | Fang DY, Lu B, Hayward S, et al. The role of activin A and B and the benefit of follistatin treatment in renal ischemia-reperfusion injury in mice[J]. Transplant Direct, 2016, 2(7):e87. |
[3] |
Shi L, Resaul J, Owen S, et al. Clinical and therapeutic implications of follistatin in solid tumours[J]. Cancer Genomics Proteomics, 2016, 13(6):425-435.
doi: 10.21873/cgp |
[4] |
Shoji-Kasai Y, Ageta H, Hasegawa Y, et al. Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics[J]. J Cell Sci, 2007, 120(Pt 21):3830-3837.
pmid: 17940062 |
[5] |
Walker RG, Poggioli T, Katsimpardi L, et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation[J]. Circ Res, 2016, 118(7):1125-1141, 1142.
doi: 10.1161/CIRCRESAHA.116.308391 pmid: 27034275 |
[6] |
Seachrist DD, Keri RA. The activin social network: activin, inhibin, and follistatin in breast development and cancer[J]. Endocrinology, 2019, 160(5):1097-1110.
doi: 10.1210/en.2019-00015 pmid: 30874767 |
[7] |
Zhang LD, Liu KL, Han B, et al. The emerging role of follistatin under stresses and its implications in diseases[J]. Gene, 2018, 639:111-116.
doi: 10.1016/j.gene.2017.10.017 |
[8] |
Schneyer AL, Wang QF, Sidis Y, et al. Differential distribution of follistatin isoforms: application of a new FS315-specific immunoassay[J]. J Clin Endocrinol Metab, 2004, 89(10):5067-5075.
doi: 10.1210/jc.2004-0162 |
[9] |
Patel K. Follistatin[J]. Int J Biochem Cell Biol, 1998, 30(10):1087-1093.
doi: 10.1016/S1357-2725(98)00064-8 |
[10] |
Hansen JS, Plomgaard P. Circulating follistatin in relation to energy metabolism[J]. Mol Cell Endocrinol, 2016, 433:87-93.
doi: 10.1016/j.mce.2016.06.002 |
[11] | Olsen OE, Hella H, Elsaadi S, et al. Activins as dual specificity TGF-β family molecules: SMAD-activation via activin- and BMP-type 1 receptors[J]. Biomolecules, 2020, 10(4):E519. |
[12] |
Nickel J, Mueller TD. Specification of BMP signa-ling[J]. Cells, 2019, 8(12):1579.
doi: 10.3390/cells8121579 |
[13] |
Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond[J]. Hum Reprod Update, 2016, 22(3):342-357.
doi: 10.1093/humupd/dmv058 pmid: 26884470 |
[14] |
Sidis Y, Mukherjee A, Keutmann H, et al. Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins[J]. Endocrinology, 2006, 147(7):3586-3597.
doi: 10.1210/en.2006-0089 |
[15] |
Hashimoto O, Kawasaki N, Tsuchida K, et al. Difference between follistatin isoforms in the inhibition of activin signalling: activin neutralizing activity of follistatin isoforms is dependent on their affinity for activin[J]. Cell Signal, 2000, 12(8):565-571.
pmid: 11027950 |
[16] |
Wang XP, Suomalainen M, Jorgez CJ, et al. Follis-tatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation[J]. Dev Cell, 2004, 7(5):719-730.
doi: 10.1016/j.devcel.2004.09.012 |
[17] |
Ferguson CA, Tucker AS, Christensen L, et al. Activin is an essential early mesenchymal signal in too-th development that is required for patterning of the murine dentition[J]. Genes Dev, 1998, 12(16):2636-2649.
doi: 10.1101/gad.12.16.2636 |
[18] |
Li S, Pan Y. Immunolocalization of connective tissue growth factor, transforming growth factor-beta1 and phosphorylated-SMAD2/3 during the postnatal tooth development and formation of junctional epithelium[J]. Ann Anat, 2018, 216:52-59.
doi: 10.1016/j.aanat.2017.10.005 |
[19] |
Li JY, Feng JF, Liu Y, et al. BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth[J]. Dev Cell, 2015, 33(2):125-135.
doi: 10.1016/j.devcel.2015.02.021 |
[20] |
Gao YR, Yang G, Weng TJ, et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice[J]. Mol Cell Biol, 2009, 29(21):5941-5951.
doi: 10.1128/MCB.00706-09 |
[21] |
Liu J, Saito K, Maruya Y, et al. Mutant GDF5 enhan-ces ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation[J]. Sci Rep, 2016, 6:23670.
doi: 10.1038/srep23670 |
[22] |
Fujiwara N, Lee JW, Kumakami-Sakano M, et al. Harmine promotes molar root development via SMAD1/5/8 phosphorylation[J]. Biochem Biophys Res Commun, 2018, 497(3):924-929.
doi: 10.1016/j.bbrc.2017.12.062 |
[23] |
Jani P, Liu C, Zhang H, et al. The role of bone morphogenetic proteins 2 and 4 in mouse dentinogenesis[J]. Arch Oral Biol, 2018, 90:33-39.
doi: 10.1016/j.archoralbio.2018.02.004 |
[24] |
Zhang R, Teng Y, Zhu L, et al. Odontoblast β-catenin signaling regulates fenestration of mouse Hertwig’s epithelial root sheath[J]. Sci China Life Sci, 2015, 58(9):876-881.
doi: 10.1007/s11427-015-4882-8 pmid: 26208822 |
[25] |
Cox TC, Lidral AC, McCoy JC, et al. Mutations in GDF11 and the extracellular antagonist, follistatin, as a likely cause of Mendelian forms of orofacial clefting in humans[J]. Hum Mutat, 2019, 40(10):1813-1825.
doi: 10.1002/humu.v40.10 |
[26] |
Gokoffski KK, Wu HH, Beites CL, et al. Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate[J]. Development, 2011, 138(19):4131-4142.
doi: 10.1242/dev.065870 pmid: 21852401 |
[27] |
Chu EY, Tamasas B, Fong H, et al. Full spectrum of postnatal tooth phenotypes in a novel Irf6 cleft lip model[J]. J Dent Res, 2016, 95(11):1265-1273.
doi: 10.1177/0022034516656787 pmid: 27369589 |
[28] |
Iwata J, Parada C, Chai Y. The mechanism of TGF-β signaling during palate development[J]. Oral Dis, 2011, 17(8):733-744.
doi: 10.1111/j.1601-0825.2011.01806.x pmid: 21395922 |
[29] |
Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development[J]. Nature, 1998, 393(6687):786-790.
doi: 10.1038/31693 |
[30] |
Ko SO, Chung IH, Xu X, et al. Smad4 is required to regulate the fate of cranial neural crest cells[J]. Dev Biol, 2007, 312(1):435-447.
doi: 10.1016/j.ydbio.2007.09.050 |
[31] |
Inoue S, Nomura S, Hosoi T, et al. Localization of follistatin, an activin-binding protein, in bone tissues[J]. Calcif Tissue Int, 1994, 55(5):395-397.
doi: 10.1007/BF00299321 |
[32] |
Funaba M, Ogawa K, Murata T, et al. Follistatin and activin in bone: expression and localization during endochondral bone development[J]. Endocrinology, 1996, 137(10):4250-4259.
pmid: 8828484 |
[33] |
Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin[J]. Reproduction, 2004, 127(2):239-254.
pmid: 15056790 |
[34] |
Fahmy-Garcia S, Farrell E, Witte-Bouma J, et al. Follistatin effects in migration, vascularization, and osteogenesis in vitro and bone repair in vivo[J]. Front Bioeng Biotechnol, 2019, 7:38.
doi: 10.3389/fbioe.2019.00038 |
[35] |
Abe Y, Abe T, Aida Y, et al. Follistatin restricts bone morphogenetic protein (BMP)-2 action on the diffe-rentiation of osteoblasts in fetal rat mandibular cells[J]. J Bone Miner Res, 2004, 19(8):1302-1307.
doi: 10.1359/JBMR.040408 |
[36] | Kim KM, Kim DY, Lee DS, et al. Peroxiredoxin Ⅱ negatively regulates BMP2-induced osteoblast differentiation and bone formation via PP2A Cα-media-ted Smad1/5/9 dephosphorylation[J]. Exp Mol Med, 2019, 51(6):1-11. |
[37] |
Choi H, Jeong BC, Kook MS, et al. Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways[J]. J Biomed Sci, 2016, 23(1):45.
doi: 10.1186/s12929-016-0260-5 |
[38] |
Kajita T, Ariyoshi W, Okinaga T, et al. Mechanisms involved in enhancement of osteoclast formation by activin-A[J]. J Cell Biochem, 2018, 119(8):6974-6985.
doi: 10.1002/jcb.v119.8 |
[39] |
Wu MR, Chen GQ, Li YP. TGF-β and BMP signa-ling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J]. Bone Res, 2016, 4:16009.
doi: 10.1038/boneres.2016.9 |
[40] |
Yaden BC, Croy JE, Wang Y, et al. Follistatin: a no-vel therapeutic for the improvement of muscle regeneration[J]. J Pharmacol Exp Ther, 2014, 349(2):355-371.
doi: 10.1124/jpet.113.211169 |
[41] | Giesige CR, Wallace LM, Heller KN, et al. AAV-mediated follistatin gene therapy improves functio-nal outcomes in the TIC-DUX4 mouse model of FSHD[J]. JCI Insight, 2018, 3(22):123538. |
[42] |
Mendell JR, Sahenk Z, Al-Zaidy S, et al. Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes[J]. Mol Ther, 2017, 25(4):870-879.
doi: S1525-0016(17)30092-8 pmid: 28279643 |
[43] |
Chen Y, Rothnie C, Spring D, et al. Regulation and actions of activin A and follistatin in myocardial is-chaemia-reperfusion injury[J]. Cytokine, 2014, 69(2):255-262.
doi: 10.1016/j.cyto.2014.06.017 pmid: 25052838 |
[44] |
Hardy CL, King SJ, Mifsud NA, et al. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology[J]. Immunol Cell Biol, 2015, 93(6):567-574.
doi: 10.1038/icb.2015.7 |
[45] |
Chang KP, Kao HK, Liang Y, et al. Overexpression of activin A in oral squamous cell carcinoma: association with poor prognosis and tumor progression[J]. Ann Surg Oncol, 2010, 17(7):1945-1956.
doi: 10.1245/s10434-010-0926-2 |
[46] |
Bufalino A, Cervigne NK, de Oliveira CE, et al. Low miR-143/miR-145 cluster levels induce activin A overexpression in oral squamous cell carcinomas, which contributes to poor prognosis[J]. PLoS One, 2015, 10(8):e0136599.
doi: 10.1371/journal.pone.0136599 |
[47] |
Ervolino De Oliveira C, Dourado MR, Sawazaki-Calone Í, et al. Activin A triggers angiogenesis via regulation of VEGFA and its overexpression is associated with poor prognosis of oral squamous cell carcinoma[J]. Int J Oncol, 2020, 57(1):364-376.
doi: 10.3892/ijo.2020.5058 pmid: 32377747 |
[48] |
Omar NN, Rashed RR, El-Hazek RM, et al. Platelet-rich plasma-induced feedback inhibition of activin A/follistatin signaling: a mechanism for tumor-low risk skin rejuvenation in irradiated rats[J]. J Photochem Photobiol B, 2018, 180:17-24.
doi: 10.1016/j.jphotobiol.2018.01.024 |
[49] |
Forrester HB, de Kretser DM, Leong T, et al. Follistatin attenuates radiation-induced fibrosis in a murine model[J]. PLoS One, 2017, 12(3):e0173788.
doi: 10.1371/journal.pone.0173788 |
[50] |
Hedger MP, Winnall WR, Phillips DJ, et al. The re-gulation and functions of activin and follistatin in inflammation and immunity[J]. Vitam Horm, 2011, 85:255-297.
doi: 10.1016/B978-0-12-385961-7.00013-5 pmid: 21353885 |
[51] |
Jones KL, Mansell A, Patella S, et al. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia[J]. Proc Natl Acad Sci U S A, 2007, 104(41):16239-16244.
doi: 10.1073/pnas.0705971104 |
[52] | 姚淑东, 宋庆高, 邓金勇, 等. 硬腭骨膜牵张成骨过程中ACTA和FS的表达研究[J]. 实用口腔医学杂志, 2012, 28(1):34-38. |
Yao SD, Song QG, Deng JY, et al. Expression of acti-vin A and follistatin in hard palate during periosteal distraction osteogenesis[J]. J Pract Stomatol, 2012, 28(1):34-38. | |
[53] | 闫欣, 王明锋. 正畸牙齿移动过程中Follistatin在牙周组织中表达的动物实验研究[J]. 中国医药指南, 2020, 18(2):9. |
Yan X, Wang MF. Animal experimental study on expression of follistatin in periodontal tissue during orthodontic tooth movement[J]. Guid China Med, 2020, 18(2):9. |
[1] | 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115. |
[2] | 刘世一, 陈中, 张素欣. 程序性死亡受体/配体免疫治疗策略在人乳头瘤病毒阳性头颈部鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 21-27. |
[3] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[4] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[5] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[6] | 徐书奎,张珊,谢新宇,马文盛. 上颌前方牵引矫治骨性Ⅲ类错![]() |
[7] | 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717. |
[8] | 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520. |
[9] | 李奕君, 徐子昂, 李一. 前哨淋巴结在头颈部鳞状细胞癌检测的应用进展[J]. 国际口腔医学杂志, 2023, 50(5): 521-527. |
[10] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[11] | 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462. |
[12] | 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262. |
[13] | 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320. |
[14] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[15] | 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236. |
|