国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (6): 711-717.doi: 10.7518/gjkq.2023110

• 综述 • 上一篇    下一篇

癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展

吴佳敏(),夏斌,杨禾丰,许彪()   

  1. 昆明医科大学附属口腔医院口腔颌面外科 昆明 650500
  • 收稿日期:2023-03-25 修回日期:2023-07-26 出版日期:2023-11-01 发布日期:2023-10-24
  • 通讯作者: 许彪
  • 作者简介:吴佳敏,硕士,Email:694467788@qq.com
  • 基金资助:
    云南省口腔医学重点实验室项目(202005AG070041);云南省卫生健康委员会内设机构项目(2018NS0210)

Research progress on cancer-associated fibroblasts in the tumor microenvironment of oral squamous cell carcinoma

Wu Jiamin(),Xia Bin,Yang Hefeng,Xu Biao.()   

  1. Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650500, China
  • Received:2023-03-25 Revised:2023-07-26 Online:2023-11-01 Published:2023-10-24
  • Contact: Biao. Xu
  • Supported by:
    Yunnan Provincial Key Laboratory of Stomatology(202005AG070041);Yunnan Provincial Health Commission Internal Institutions Project(2018NS0210)

摘要:

癌相关成纤维细胞是肿瘤微环境中数目最为丰富的基质细胞。越来越多的研究发现癌相关成纤维细胞对肿瘤的发生发展发挥着巨大作用。癌相关成纤维细胞不仅能够重塑细胞外基质,调节肿瘤代谢,参与免疫调节,还能促进肿瘤的生长、血管生成、迁移和侵袭等。因此,破坏癌相关成纤维细胞与周围环境的交互可能提供新的治疗思路。本文将对癌相关成纤维细胞在口腔鳞状细胞癌中的研究进展进行综述。

关键词: 癌相关成纤维细胞, 口腔鳞状细胞癌, 肿瘤微环境

Abstract:

Cancer-associated fibroblasts are the most abundant stromal cells in the tumor microenvironment. An increasing number of studies have found that cancer-associated fibroblasts play a remarkable role in the development of tumors. Cancer-associated fibroblasts remodel the extracellular matrix, regulate tumor metabolism, and participate in immune regulation, and promote tumor growth, angiogenesis, migration, and invasion. Therefore, disrupting the interaction between cancer-associated fibroblasts and the surrounding environment may provide us with new therapeutic ideas. In this paper, we will review the research progress on cancer-associated fibroblasts in oral squamous carcinoma.

Key words: cancer-associated fibroblast, oral squamous cell carcinoma, tumor microenvironment

中图分类号: 

  • R 739.81
1 Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma: an update[J]. CA Cancer J Clin, 2015, 65(5): 401-421.
2 Santos Peixoto T, Gomes MC, de Castro Gomes DQ, et al. Analysis of survival rates and prognostic factors among patients with oral squamous cell carcinoma[J]. J Public Heath, 2017, 25(4): 433-441.
3 Hui LL, Chen Y. Tumor microenvironment: sanc-tuary of the devil[J]. Cancer Lett, 2015, 368(1): 7-13.
4 Denton AE, Roberts EW, Fearon DT. Stromal cells in the tumor microenvironment[J]. Adv Exp Med Biol, 2018, 1060: 99-114.
5 Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598.
6 Chen XM, Song EW. Turning foes to friends: targe-ting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115.
7 Xiao Y, Yu DH. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753.
8 Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3): 174-186.
9 Desbois M, Wang YL. Cancer-associated fibroblasts: key players in shaping the tumor immune microenvironment[J]. Immunol Rev, 2021, 302(1): 241-258.
10 Li C, Teixeira AF, Zhu HJ, et al. Cancer associated-fibroblast-derived exosomes in cancer progression[J]. Mol Cancer, 2021, 20(1): 154.
11 Joshi RS, Kanugula SS, Sudhir S, et al. The role of cancer-associated fibroblasts in tumor progression[J]. Cancers, 2021, 13(6): 1399.
12 Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts[J]. Cancer Discov, 2019, 9(8): 1102-1123.
13 Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer[J]. J Exp Med, 2017, 214(3): 579-596.
14 Han CC, Liu TY, Yin R. Biomarkers for cancer-associated fibroblasts[J]. Biomark Res, 2020, 8(1): 64.
15 Zhang JY, Zhu WW, Wang MY, et al. Cancer-asso-ciated fibroblasts promote oral squamous cell carcinoma progression through LOX-mediated matrix stiffness[J]. J Transl Med, 2021, 19(1): 513.
16 Kim DK, Kim EK, Jung DW, et al. Cytoskeletal alteration modulates cancer cell invasion through RhoA-YAP signaling in stromal fibroblasts[J]. PLoS One, 2019, 14(3): e0214553.
17 Grasset EM, Bertero T, Bozec A, et al. Matrix stif-fening and EGFR cooperate to promote the collective invasion of cancer cells[J]. Cancer Res, 2018, 78(18): 5229-5242.
18 Karakasheva TA, Lin EW, Tang QS, et al. IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment[J]. Cancer Res, 2018, 78(17): 4957-4970.
19 Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis[J]. Biochem Soc Trans, 2017, 45(1): 229-236.
20 Najafi M, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers[J]. J Cell Biochem, 2019, 120(3): 2782-2790.
21 Kumar D, Kandl C, Hamilton CD, et al. Mitigation of tumor-associated fibroblast-facilitated head and neck cancer progression with anti-hepatocyte grow-th factor antibody ficlatuzumab[J]. JAMA Otolaryngol Head Neck Surg, 2015, 141(12): 1133-1139.
22 Yoshimatsu Y, Wakabayashi I, Kimuro S, et al. TNF-α enhances TGF‑β‑induced endothelial-to-mesenchymal transition via TGF‑β signal augmentation[J]. Cancer Sci, 2020, 111(7): 2385-2399.
23 Zhang XL, Hwang YS. Cancer-associated fibroblast stimulates cancer cell invasion in an interleukin-1 receptor (IL-1R)‑dependent manner[J]. Oncol Lett, 2019, 18(5): 4645-4650.
24 Li ZZ, Sun CJ, Qin ZH. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming[J]. Theranostics, 2021, 11(17): 8322-8336.
25 Warburg O, Wind F, Negelein E. The metabolism of tumors in the body[J]. J Gen Physiol, 1927, 8(6): 519-530.
26 Li X, Jiang EH, Zhao H, et al. Glycometabolic reprogramming-mediated proangiogenic phenotype enhancement of cancer-associated fibroblasts in oral squamous cell carcinoma: role of PGC-1α/PFKFB3 axis[J]. Br J Cancer, 2022, 127(3): 449-461.
27 Yang J, Shi XK, Yang M, et al. Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway[J]. Int J Oral Sci, 2021, 13(1): 12.
28 Xiao L, Hu QN, Peng YS, et al. TRAP1 suppresses oral squamous cell carcinoma progression by redu-cing oxidative phosphorylation metabolism of Cancer-associated fibroblasts[J]. BMC Cancer, 2021, 21(1): 1329.
29 Zhang XX, Dong YC, Zhao MX, et al. ITGB2-me-diated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochon-drial oxidative phosphorylation system[J]. Theranostics, 2020, 10(26): 12044-12059.
30 Yang LF, Achreja A, Yeung TL, et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth[J]. Cell Metab, 2016, 24(5): 685-700.
31 Gong J, Lin YY, Zhang HQ, et al. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells[J]. Cell Death Dis, 2020, 11(4): 267.
32 Huang TX, Tan XY, Huang HS, et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity[J]. Gut, 2022, 71(2): 333-344.
33 Huang YH, Chang CY, Kuo YZ, et al. Cancer-associated fibroblast-derived interleukin-1β activates protumor C-C motif chemokine ligand 22 signaling in head and neck cancer[J]. Cancer Sci, 2019, 110(9): 2783-2793.
34 Zhao XX, Ding L, Lu ZY, et al. Diminished CD68+ cancer-associated fibroblast subset induces regulatory T-cell (treg) infiltration and predicts poor prognosis of oral squamous cell carcinoma patients[J]. Am J Pathol, 2020, 190(4): 886-899.
35 Li X, Bu WH, Meng L, et al. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC[J]. Exp Cell Res, 2019, 378(2): 131-138.
36 Xie JQ, Qi XF, Wang YF, et al. Cancer-associated fibroblasts secrete hypoxia-induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway[J]. Cell Oncol, 2021, 44(3): 661-671.
37 Kumar D, New J, Vishwakarma V, et al. Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression[J]. Cancer Res, 2018, 78(14): 3769-3782.
38 Qin X, Yan M, Wang X, et al. Cancer-associated fibroblast-derived IL-6 promotes head and neck cancer progression via the osteopontin-NF-kappa B signaling pathway[J]. Theranostics, 2018, 8(4): 921-940.
39 Wei LY, Lee JJ, Yeh CY, et al. Reciprocal activation of cancer-associated fibroblasts and oral squamous carcinoma cells through CXCL1[J]. Oral Oncol, 2019, 88: 115-123.
40 Sun LP, Xu K, Cui J, et al. Cancer‑associated fibroblast‑derived exosomal miR‑382‑5p promotes the migration and invasion of oral squamous cell carcinoma[J]. Oncol Rep, 2019, 42(4): 1319-1328.
41 Zhu GQ, Cao BR, Liang XH, et al. Small extracellular vesicles containing miR-192/215 mediate hypo-xia-induced cancer-associated fibroblast development in head and neck squamous cell carcinoma[J]. Cancer Lett, 2021, 506: 11-22.
42 Li J, Liu X, Zang SZ, et al. Small extracellular vesicle-bound vascular endothelial growth factor secre-ted by carcinoma-associated fibroblasts promotes angiogenesis in a bevacizumab-resistant manner[J]. Cancer Lett, 2020, 492: 71-83.
43 Kayamori K, Katsube K, Sakamoto K, et al. NOTCH3 is induced in cancer-associated fibroblasts and promotes angiogenesis in oral squamous cell carcinoma[J]. PLoS One, 2016, 11(4): e0154112.
44 Liao JK, Zhou B, Zhuang XM, et al. Cancer-asso-ciated fibroblasts confer cisplatin resistance of tongue cancer via autophagy activation[J]. Biomed Pharmacother, 2018, 97: 1341-1348.
45 Zhang DY, Ding L, Li Y, et al. Midkine derived from cancer-associated fibroblasts promotes cispla-tin-resistance via up-regulation of the expression of lncRNA ANRIL in tumour cells[J]. Sci Rep, 2017, 7(1): 16231.
46 Chen JH, Wu ATH, Bamodu OA, et al. Ovatodiolide suppresses oral cancer malignancy by down-regula-ting exosomal mir-21/STAT3/β‑catenin cargo and preventing oncogenic transformation of normal gingival fibroblasts[J]. Cancers, 2019, 12(1): 56.
47 Qin X, Guo HY, Wang XN, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5[J]. Genome Biol, 2019, 20(1): 12.
48 Wu FL, Yang J, Liu JJ, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 218.
49 Wang YX, Xie DY, Pan JR, et al. A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry therapy against oral squamous cell cancer[J]. Biomater Sci, 2019, 7(12): 5270-5282.
50 Wu FL, Wang SM, Zeng QX, et al. TGF-βRⅡ regulates glucose metabolism in oral cancer-associated fibroblasts via promoting PKM2 nuclear translocation[J]. Cell Death Discov, 2022, 8(1): 3.
51 Wang Q, Zhang YC, Zhu LF, et al. Heat shock factor 1 in cancer-associated fibroblasts is a potential prognostic factor and drives progression of oral squamous cell carcinoma[J]. Cancer Sci, 2019, 110(5): 1790-1803.
52 Hanley CJ, Mellone M, Ford K, et al. Targeting the myofibroblastic cancer-associated fibroblast phenotype through inhibition of NOX4[J]. J Natl Cancer Inst, 2018, 110(1): 109-120.
53 Xia CW, Pan JR, Wang JQ, et al. Functional bloc-kade of cancer-associated fibroblasts with ultrafine gold nanomaterials causes an unprecedented bystander antitumoral effect[J]. Nanoscale, 2020, 12(38): 19833-19843.
54 Ko YC, Lai TY, Hsu SC, et al. Index of cancer-associated fibroblasts is superior to the epithelial-mesenchymal transition score in prognosis prediction[J]. Cancers, 2020, 12(7): 1718.
55 Custódio M, Biddle A, Tavassoli M. Portrait of a CAF: the story of cancer-associated fibroblasts in head and neck cancer[J]. Oral Oncol, 2020, 110: 104972.
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[3] 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520.
[4] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
[5] 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236.
[6] 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470.
[7] 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143.
[8] 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717.
[9] 甘建国,高攀,王晓毅. 循环肿瘤细胞与口腔鳞状细胞癌相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 205-212.
[10] 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57.
[11] 何宇晴,但红霞,陈谦明. 光动力疗法在口腔黏膜癌变防治中的应用[J]. 国际口腔医学杂志, 2020, 47(6): 669-676.
[12] 郝福,宁毅,孙睿,郑晓旭. 口腔鳞状细胞癌中转化因子2β的表达及潜在的临床意义[J]. 国际口腔医学杂志, 2020, 47(2): 159-165.
[13] 薛伶俐,李雅冬. 经首次根治性手术治疗口腔鳞状细胞癌患者的生存相关影响因素分析[J]. 国际口腔医学杂志, 2020, 47(2): 166-174.
[14] 董云梅,陶艳,周瑜. 口腔黏膜癌变过程中血清生化标志物的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 43-50.
[15] 陈宏丽,杨敬,尹刚,李皓缘,乔燕. 锌指蛋白32在口腔鳞状细胞癌中的表达意义及对口腔鳞状细胞癌干细胞的影响[J]. 国际口腔医学杂志, 2019, 46(6): 631-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .