国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (6): 711-717.doi: 10.7518/gjkq.2021109

• 综述 • 上一篇    下一篇

外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究

蒋宇磊(),夏斌,饶南荃,杨禾丰,许彪()   

  1. 昆明医科大学附属口腔医院口腔颌面外科 昆明 650500
  • 收稿日期:2021-03-28 修回日期:2021-07-10 出版日期:2021-11-01 发布日期:2021-10-28
  • 通讯作者: 许彪
  • 作者简介:蒋宇磊,硕士,Email: 2523759018@qq.com
  • 基金资助:
    云南省自然科学基金(2018rs0210)

Exosomes mediate the malignant progression of oral squamous cell carcinoma and its application in diagnosis and treatment

Jiang Yulei(),Xia Bin,Rao Nanquan,Yang Hefeng,Xu Biao()   

  1. Dept. of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Kunming Medical University, Kunming 650500, China
  • Received:2021-03-28 Revised:2021-07-10 Online:2021-11-01 Published:2021-10-28
  • Contact: Biao Xu
  • Supported by:
    Natural Science Foundation of Yunnan Province(2018rs0210)

摘要:

外泌体是一种在细胞间通讯中起重要作用的细胞外囊泡,广泛存在于人体体液中,通过携带多种活性物质,如蛋白质、mRNA、微小RNA、DNA等传递生物信息,发挥生物学效应。口腔鳞状细胞癌(OSCC)分泌的外泌体能通过激活多种信号通路,影响肿瘤微环境进而促进OSCC的发生发展,这为辅助OSCC的早期诊断和预后分析提供了新的治疗策略。此外,由于外泌体在肿瘤微环境中独特的交互作用,可利用外泌体及其修饰加工物作为基因和药物的有效载体,用于OSCC的靶向治疗。本文就外泌体的产生及其在OSCC中的作用以及外泌体在OSCC的临床诊断及治疗中的研究进展进行综述。

关键词: 外泌体, 口腔鳞状细胞癌, 靶向治疗

Abstract:

Exosomes are extracellular vesicles that play an important role in intercellular communication and are widely present in human body fluids. Exosomes exert biological effects by carrying various active substances, such as proteins, mRNA, microRNA, and DNA. For example, those secreted by oral squamous cell carcinoma (OSCC) can affect the tumor microenvironment and promote the development of tumors by activating various signal pathways. Therefore, these vesicles provide a new treatment strategy for assisting the early diagnosis and prognosis of OSCC. Owing to their unique interaction in the tumor microenvironment, exosomes and their modified products can be used as effective carriers of genes and drugs for targeted OSCC therapy. This article reviews the production of exosomes, their role in OSCC, and the clinical diagnosis and treatment of exosomes in OSCC.

Key words: exosome, oral squamous cell carcinoma, targeted therapy

中图分类号: 

  • R739.8
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
doi: 10.3322/caac.v68.6
[2] 房元章. 浅谈癌症及其治疗方法[J]. 生物学教学, 2005(1):61-62.
Fang YZ. Discuss cancer and its treatment[J]. Biol Teach, 2005(1):61-62.
[3] Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8(2):98-101.
[4] Rak J. Extracellular vesicles-biomarkers and effectors of the cellular interactome in cancer[J]. Front Pharmacol, 2013, 4:21.
[5] Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies[J]. Leukemia, 2017, 31(6):1259-1268.
doi: 10.1038/leu.2017.91 pmid: 28321122
[6] Kalluri R. The biology and function of exosomes in cancer[J]. J Clin Invest, 2016, 126(4):1208-1215.
doi: 10.1172/JCI81135 pmid: 27035812
[7] Bergmann C, Strauss L, Wieckowski E, et al. Tumor-derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression[J]. Head Neck, 2009, 31(3):371-380.
doi: 10.1002/hed.v31:3
[8] Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles[J]. J Extracell Vesicles, 2013, 2.
[9] Kalluri R, LeBleu VS . The biology, function, and bio-medical applications of exosomes[J]. Science, 2020, 367(6478):6977.
[10] Ostrowski M, Carmo NB, Krumeich S, et al. Rab-27a and Rab27b control different steps of the exosome secretion pathway[J]. Nat Cell Biol, 2010, 12(1):19-30.
doi: 10.1038/ncb2000 pmid: 19966785
[11] Zhang YT, Hao ZC, Wang PF, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated pro-motion of angiogenesis in a rat model of stabilized fracture[J]. Cell Prolif, 2019, 52(2):e12570.
doi: 10.1111/cpr.2019.52.issue-2
[12] Zeng ZC, Li YL, Pan YJ, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis[J]. Nat Commun, 2018, 9(1):5395.
doi: 10.1038/s41467-018-07810-w
[13] Zhou Y, Ren HZ, Dai B, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts[J]. J Exp Clin Cancer Res, 2018, 37(1):324.
doi: 10.1186/s13046-018-0965-2
[14] Wang Z, Chen JQ, Liu JL, et al. Exosomes in tumor microenvironment: novel transporters and biomarkers[J]. J Transl Med, 2016, 14(1):297.
doi: 10.1186/s12967-016-1056-9
[15] Luga V, Wrana JL. Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis[J]. Cancer Res, 2013, 73(23):6843-6847.
doi: 10.1158/0008-5472.CAN-13-1791
[16] Principe S, Mejia-Guerrero S, Ignatchenko V, et al. Proteomic analysis of cancer-associated fibroblasts reveals a paracrine role for MFAP5 in human oral tongue squamous cell carcinoma[J]. J Proteome Res, 2018, 17(6):2045-2059.
doi: 10.1021/acs.jproteome.7b00925 pmid: 29681158
[17] Sun LP, Xu K, Cui J, et al. Cancer‑associated fibro-blast‑derived exosomal miR‑382‑5p promotes the mi-gration and invasion of oral squamous cell carcinoma[J]. Oncol Rep, 2019, 42(4):1319-1328.
[18] Li YY, Tao YW, Zheng SM, et al. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p[J]. EBioMedicine, 2018, 36:209-220.
doi: 10.1016/j.ebiom.2018.09.006
[19] Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles[J]. Nat Rev Immunol, 2014, 14(3):195-208.
doi: 10.1038/nri3622 pmid: 24566916
[20] Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J]. Nat Med, 2001, 7(3):297-303.
pmid: 11231627
[21] Rao Q, Zuo BF, Lu Z, et al. Tumor-derived exoso-mes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro[J]. Hepatology, 2016, 64(2):456-472.
doi: 10.1002/hep.28549
[22] Plebanek MP, Angeloni NL, Vinokour E, et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic ni-che[J]. Nat Commun, 2017, 8(1):1319.
doi: 10.1038/s41467-017-01433-3 pmid: 29105655
[23] Ludwig S, Floros T, Theodoraki MN, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res, 2017, 23(16):4843-4854.
doi: 10.1158/1078-0432.CCR-16-2819 pmid: 28400428
[24] van Dalen FJ, van Stevendaal MHME, Fennemann FL, et al. Molecular repolarisation of tumour-associated macrophages[J]. Molecules, 2018, 24(1):E9.
[25] Eichmüller SB, Osen W, Mandelboim O, et al. Immune modulatory microRNAs involved in tumor attack and tumor immune escape[J]. J Natl Cancer In-st, 2017, 109(10): djx034.
[26] Cai J, Qiao B, Gao N, et al. Oral squamous cell carcinoma-derived exosomes promote M2 subtype ma-crophage polarization mediated by exosome-enclo-sed miR-29a-3p[J]. Am J Physiol Cell Physiol, 2019, 316(5):C731-C740.
doi: 10.1152/ajpcell.00366.2018
[27] Xiao M, Zhang J, Chen W, et al. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1):143.
doi: 10.1186/s13046-018-0815-2
[28] Li L, Cao BR, Liang XH, et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes[J]. Oncogene, 2019, 38(15):2830-2843.
doi: 10.1038/s41388-018-0627-z
[29] Ribeiro MF, Zhu HY, Millard RW, et al. Exosomes function in pro- and anti-angiogenesis[J]. Curr Angiogenes, 2013, 2(1):54-59.
[30] Nazarenko I, Rana S, Baumann A, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation[J]. Cancer Res, 2010, 70(4):1668-1678.
doi: 10.1158/0008-5472.CAN-09-2470 pmid: 20124479
[31] de Andrade A, de Oliveira CE, Dourado MR, et al. Extracellular vesicles from oral squamous carcinoma cells display pro- and anti-angiogenic properties[J]. Oral Dis, 2018, 24(5):725-731.
doi: 10.1111/odi.12765 pmid: 28887832
[32] Ludwig N, Yerneni SS, Razzo BM, et al. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells[J]. Mol Cancer Res, 2018, 16(11):1798-1808.
doi: 10.1158/1541-7786.MCR-18-0358 pmid: 30042174
[33] Sharma A. Chemoresistance in cancer cells: exoso-mes as potential regulators of therapeutic tumor heterogeneity[J]. Nanomedicine (Lond), 2017, 12(17):2137-2148.
doi: 10.2217/nnm-2017-0184
[34] Kirave P, Gondaliya P, Kulkarni B, et al. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition[J]. Oncotarget, 2020, 11(13):1157-1171.
doi: 10.18632/oncotarget.v11i13
[35] Liu T, Chen G, Sun DW, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49(9):808-816.
doi: 10.1093/abbs/gmx078
[36] Khoo XH, Paterson IC, Goh BH, et al. Cisplatin-resistance in oral squamous cell carcinoma: regulation by tumor cell-derived extracellular vesicles[J]. Cancers (Basel), 2019, 11(8):E1166.
[37] Rahbarghazi R, Jabbari N, Sani NA, et al. Tumor-derived extracellular vesicles: reliable tools for Cancer diagnosis and clinical applications[J]. Cell Commun Signal, 2019, 17(1):73.
doi: 10.1186/s12964-019-0390-y pmid: 31291956
[38] Cristaldi M, Mauceri R, Di Fede O, et al. Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: current status and perspectives[J]. Front Physiol, 2019, 10:1476.
doi: 10.3389/fphys.2019.01476 pmid: 31920689
[39] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015, 61(1):221-230.
doi: 10.1373/clinchem.2014.230433
[40] Keller S, Ridinger J, Rupp AK, et al. Body fluid derived exosomes as a novel template for clinical diagnostics[J]. J Transl Med, 2011, 9:86.
doi: 10.1186/1479-5876-9-86
[41] Sharma S, Gillespie BM, Palanisamy V, et al. Quantitative nanostructural and single-molecule force spe-ctroscopy biomolecular analysis of human-saliva-derived exosomes[J]. Langmuir, 2011, 27(23):14394-14400.
doi: 10.1021/la2038763
[42] Zhong WQ, Ren JG, Xiong XP, et al. Increased salivary microvesicles are associated with the prognosis of patients with oral squamous cell carcinoma[J]. J Cell Mol Med, 2019, 23(6):4054-4062.
doi: 10.1111/jcmm.2019.23.issue-6
[43] He LH, Ping F, Fan ZN, et al. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening[J]. Biomedecine Pharmacother, 2020, 121:109553.
[44] Liu CJ, Lin SC, Yang CC, et al. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma[J]. Head Neck, 2012, 34(2):219-224.
doi: 10.1002/hed.v34.2
[45] Peng Q, Zhang S, Yang Q, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system[J]. Biomaterials, 2013, 34(33):8521-8530.
doi: 10.1016/j.biomaterials.2013.07.102
[46] Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release, 2015, 219:396-405.
doi: 10.1016/j.jconrel.2015.07.030
[47] Wiklander OP, Nordin JZ, O'Loughlin A , et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting[J]. J Extracell Vesicles, 2015, 4:26316.
[48] Li L, Lu S, Liang X, et al. γδTDEs: an efficient delivery system for miR-138 with anti-tumoral and immunostimulatory roles on oral squamous cell carcinoma[J]. Mol Ther Nucleic Acids, 2019, 14:101-113.
doi: 10.1016/j.omtn.2018.11.009
[49] Xie C, Du LY, Guo FY, et al. Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration[J]. Mol Cell Biochem, 2019, 458(1/2):11-26.
doi: 10.1007/s11010-019-03526-7
[50] Li WW, Han Y, Zhao ZF, et al. Oral mucosal mesenchymal stem cell‑derived exosomes: a potential therapeutic target in oral premalignant lesions[J]. Int J Oncol, 2019, 54(5):1567-1578.
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[3] 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717.
[4] 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520.
[5] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
[6] 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236.
[7] 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126.
[8] 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470.
[9] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[10] 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143.
[11] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[12] 钱颖,龚佳幸,俞梦飞,刘宇,魏栋,朱子羽,陆科杰,王慧明. 从分子生物学角度对成釉细胞瘤诊断及治疗的考量[J]. 国际口腔医学杂志, 2021, 48(5): 570-578.
[13] 马平川,李春洁,李龙江. 唾液腺导管癌的诊疗研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 459-467.
[14] 甘建国,高攀,王晓毅. 循环肿瘤细胞与口腔鳞状细胞癌相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 205-212.
[15] 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .