国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (6): 711-717.doi: 10.7518/gjkq.2021109
Jiang Yulei(),Xia Bin,Rao Nanquan,Yang Hefeng,Xu Biao()
摘要:
外泌体是一种在细胞间通讯中起重要作用的细胞外囊泡,广泛存在于人体体液中,通过携带多种活性物质,如蛋白质、mRNA、微小RNA、DNA等传递生物信息,发挥生物学效应。口腔鳞状细胞癌(OSCC)分泌的外泌体能通过激活多种信号通路,影响肿瘤微环境进而促进OSCC的发生发展,这为辅助OSCC的早期诊断和预后分析提供了新的治疗策略。此外,由于外泌体在肿瘤微环境中独特的交互作用,可利用外泌体及其修饰加工物作为基因和药物的有效载体,用于OSCC的靶向治疗。本文就外泌体的产生及其在OSCC中的作用以及外泌体在OSCC的临床诊断及治疗中的研究进展进行综述。
中图分类号:
[1] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
doi: 10.3322/caac.v68.6 |
[2] | 房元章. 浅谈癌症及其治疗方法[J]. 生物学教学, 2005(1):61-62. |
Fang YZ. Discuss cancer and its treatment[J]. Biol Teach, 2005(1):61-62. | |
[3] | Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8(2):98-101. |
[4] | Rak J. Extracellular vesicles-biomarkers and effectors of the cellular interactome in cancer[J]. Front Pharmacol, 2013, 4:21. |
[5] |
Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies[J]. Leukemia, 2017, 31(6):1259-1268.
doi: 10.1038/leu.2017.91 pmid: 28321122 |
[6] |
Kalluri R. The biology and function of exosomes in cancer[J]. J Clin Invest, 2016, 126(4):1208-1215.
doi: 10.1172/JCI81135 pmid: 27035812 |
[7] |
Bergmann C, Strauss L, Wieckowski E, et al. Tumor-derived microvesicles in sera of patients with head and neck cancer and their role in tumor progression[J]. Head Neck, 2009, 31(3):371-380.
doi: 10.1002/hed.v31:3 |
[8] | Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles[J]. J Extracell Vesicles, 2013, 2. |
[9] | Kalluri R, LeBleu VS . The biology, function, and bio-medical applications of exosomes[J]. Science, 2020, 367(6478):6977. |
[10] |
Ostrowski M, Carmo NB, Krumeich S, et al. Rab-27a and Rab27b control different steps of the exosome secretion pathway[J]. Nat Cell Biol, 2010, 12(1):19-30.
doi: 10.1038/ncb2000 pmid: 19966785 |
[11] |
Zhang YT, Hao ZC, Wang PF, et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated pro-motion of angiogenesis in a rat model of stabilized fracture[J]. Cell Prolif, 2019, 52(2):e12570.
doi: 10.1111/cpr.2019.52.issue-2 |
[12] |
Zeng ZC, Li YL, Pan YJ, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis[J]. Nat Commun, 2018, 9(1):5395.
doi: 10.1038/s41467-018-07810-w |
[13] |
Zhou Y, Ren HZ, Dai B, et al. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts[J]. J Exp Clin Cancer Res, 2018, 37(1):324.
doi: 10.1186/s13046-018-0965-2 |
[14] |
Wang Z, Chen JQ, Liu JL, et al. Exosomes in tumor microenvironment: novel transporters and biomarkers[J]. J Transl Med, 2016, 14(1):297.
doi: 10.1186/s12967-016-1056-9 |
[15] |
Luga V, Wrana JL. Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis[J]. Cancer Res, 2013, 73(23):6843-6847.
doi: 10.1158/0008-5472.CAN-13-1791 |
[16] |
Principe S, Mejia-Guerrero S, Ignatchenko V, et al. Proteomic analysis of cancer-associated fibroblasts reveals a paracrine role for MFAP5 in human oral tongue squamous cell carcinoma[J]. J Proteome Res, 2018, 17(6):2045-2059.
doi: 10.1021/acs.jproteome.7b00925 pmid: 29681158 |
[17] | Sun LP, Xu K, Cui J, et al. Cancer‑associated fibro-blast‑derived exosomal miR‑382‑5p promotes the mi-gration and invasion of oral squamous cell carcinoma[J]. Oncol Rep, 2019, 42(4):1319-1328. |
[18] |
Li YY, Tao YW, Zheng SM, et al. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p[J]. EBioMedicine, 2018, 36:209-220.
doi: 10.1016/j.ebiom.2018.09.006 |
[19] |
Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles[J]. Nat Rev Immunol, 2014, 14(3):195-208.
doi: 10.1038/nri3622 pmid: 24566916 |
[20] |
Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming[J]. Nat Med, 2001, 7(3):297-303.
pmid: 11231627 |
[21] |
Rao Q, Zuo BF, Lu Z, et al. Tumor-derived exoso-mes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro[J]. Hepatology, 2016, 64(2):456-472.
doi: 10.1002/hep.28549 |
[22] |
Plebanek MP, Angeloni NL, Vinokour E, et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic ni-che[J]. Nat Commun, 2017, 8(1):1319.
doi: 10.1038/s41467-017-01433-3 pmid: 29105655 |
[23] |
Ludwig S, Floros T, Theodoraki MN, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer[J]. Clin Cancer Res, 2017, 23(16):4843-4854.
doi: 10.1158/1078-0432.CCR-16-2819 pmid: 28400428 |
[24] | van Dalen FJ, van Stevendaal MHME, Fennemann FL, et al. Molecular repolarisation of tumour-associated macrophages[J]. Molecules, 2018, 24(1):E9. |
[25] | Eichmüller SB, Osen W, Mandelboim O, et al. Immune modulatory microRNAs involved in tumor attack and tumor immune escape[J]. J Natl Cancer In-st, 2017, 109(10): djx034. |
[26] |
Cai J, Qiao B, Gao N, et al. Oral squamous cell carcinoma-derived exosomes promote M2 subtype ma-crophage polarization mediated by exosome-enclo-sed miR-29a-3p[J]. Am J Physiol Cell Physiol, 2019, 316(5):C731-C740.
doi: 10.1152/ajpcell.00366.2018 |
[27] |
Xiao M, Zhang J, Chen W, et al. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1):143.
doi: 10.1186/s13046-018-0815-2 |
[28] |
Li L, Cao BR, Liang XH, et al. Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes[J]. Oncogene, 2019, 38(15):2830-2843.
doi: 10.1038/s41388-018-0627-z |
[29] | Ribeiro MF, Zhu HY, Millard RW, et al. Exosomes function in pro- and anti-angiogenesis[J]. Curr Angiogenes, 2013, 2(1):54-59. |
[30] |
Nazarenko I, Rana S, Baumann A, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation[J]. Cancer Res, 2010, 70(4):1668-1678.
doi: 10.1158/0008-5472.CAN-09-2470 pmid: 20124479 |
[31] |
de Andrade A, de Oliveira CE, Dourado MR, et al. Extracellular vesicles from oral squamous carcinoma cells display pro- and anti-angiogenic properties[J]. Oral Dis, 2018, 24(5):725-731.
doi: 10.1111/odi.12765 pmid: 28887832 |
[32] |
Ludwig N, Yerneni SS, Razzo BM, et al. Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells[J]. Mol Cancer Res, 2018, 16(11):1798-1808.
doi: 10.1158/1541-7786.MCR-18-0358 pmid: 30042174 |
[33] |
Sharma A. Chemoresistance in cancer cells: exoso-mes as potential regulators of therapeutic tumor heterogeneity[J]. Nanomedicine (Lond), 2017, 12(17):2137-2148.
doi: 10.2217/nnm-2017-0184 |
[34] |
Kirave P, Gondaliya P, Kulkarni B, et al. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition[J]. Oncotarget, 2020, 11(13):1157-1171.
doi: 10.18632/oncotarget.v11i13 |
[35] |
Liu T, Chen G, Sun DW, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49(9):808-816.
doi: 10.1093/abbs/gmx078 |
[36] | Khoo XH, Paterson IC, Goh BH, et al. Cisplatin-resistance in oral squamous cell carcinoma: regulation by tumor cell-derived extracellular vesicles[J]. Cancers (Basel), 2019, 11(8):E1166. |
[37] |
Rahbarghazi R, Jabbari N, Sani NA, et al. Tumor-derived extracellular vesicles: reliable tools for Cancer diagnosis and clinical applications[J]. Cell Commun Signal, 2019, 17(1):73.
doi: 10.1186/s12964-019-0390-y pmid: 31291956 |
[38] |
Cristaldi M, Mauceri R, Di Fede O, et al. Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: current status and perspectives[J]. Front Physiol, 2019, 10:1476.
doi: 10.3389/fphys.2019.01476 pmid: 31920689 |
[39] |
Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015, 61(1):221-230.
doi: 10.1373/clinchem.2014.230433 |
[40] |
Keller S, Ridinger J, Rupp AK, et al. Body fluid derived exosomes as a novel template for clinical diagnostics[J]. J Transl Med, 2011, 9:86.
doi: 10.1186/1479-5876-9-86 |
[41] |
Sharma S, Gillespie BM, Palanisamy V, et al. Quantitative nanostructural and single-molecule force spe-ctroscopy biomolecular analysis of human-saliva-derived exosomes[J]. Langmuir, 2011, 27(23):14394-14400.
doi: 10.1021/la2038763 |
[42] |
Zhong WQ, Ren JG, Xiong XP, et al. Increased salivary microvesicles are associated with the prognosis of patients with oral squamous cell carcinoma[J]. J Cell Mol Med, 2019, 23(6):4054-4062.
doi: 10.1111/jcmm.2019.23.issue-6 |
[43] | He LH, Ping F, Fan ZN, et al. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening[J]. Biomedecine Pharmacother, 2020, 121:109553. |
[44] |
Liu CJ, Lin SC, Yang CC, et al. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma[J]. Head Neck, 2012, 34(2):219-224.
doi: 10.1002/hed.v34.2 |
[45] |
Peng Q, Zhang S, Yang Q, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system[J]. Biomaterials, 2013, 34(33):8521-8530.
doi: 10.1016/j.biomaterials.2013.07.102 |
[46] |
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release, 2015, 219:396-405.
doi: 10.1016/j.jconrel.2015.07.030 |
[47] | Wiklander OP, Nordin JZ, O'Loughlin A , et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting[J]. J Extracell Vesicles, 2015, 4:26316. |
[48] |
Li L, Lu S, Liang X, et al. γδTDEs: an efficient delivery system for miR-138 with anti-tumoral and immunostimulatory roles on oral squamous cell carcinoma[J]. Mol Ther Nucleic Acids, 2019, 14:101-113.
doi: 10.1016/j.omtn.2018.11.009 |
[49] |
Xie C, Du LY, Guo FY, et al. Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration[J]. Mol Cell Biochem, 2019, 458(1/2):11-26.
doi: 10.1007/s11010-019-03526-7 |
[50] | Li WW, Han Y, Zhao ZF, et al. Oral mucosal mesenchymal stem cell‑derived exosomes: a potential therapeutic target in oral premalignant lesions[J]. Int J Oncol, 2019, 54(5):1567-1578. |
[1] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[2] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[3] | 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717. |
[4] | 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520. |
[5] | 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320. |
[6] | 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236. |
[7] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
[8] | 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470. |
[9] | 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496. |
[10] | 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143. |
[11] | 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36. |
[12] | 钱颖,龚佳幸,俞梦飞,刘宇,魏栋,朱子羽,陆科杰,王慧明. 从分子生物学角度对成釉细胞瘤诊断及治疗的考量[J]. 国际口腔医学杂志, 2021, 48(5): 570-578. |
[13] | 马平川,李春洁,李龙江. 唾液腺导管癌的诊疗研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 459-467. |
[14] | 甘建国,高攀,王晓毅. 循环肿瘤细胞与口腔鳞状细胞癌相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 205-212. |
[15] | 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57. |
|