国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (1): 120-126.doi: 10.7518/gjkq.2023015
• 综述 • 上一篇
摘要:
巨噬细胞是人体固有免疫的主要成分,与骨组织关系密切。外泌体是由所有细胞释放的纳米级囊泡,携带来源细胞的核酸等信息调节靶细胞功能。研究表明巨噬细胞释放的外泌体能够有效调节骨骼改建,通过多种方式影响微环境,进而影响成骨。本文总结巨噬细胞源性外泌体作用于骨改建的研究进展,为开发治疗策略提供参考。
中图分类号:
1 | Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective[J]. Annu Rev Immunol, 2009, 27: 451-483. |
2 | Saradna A, Do DC, Kumar S, et al. Macrophage polarization and allergic asthma[J]. Transl Res, 2018, 191: 1-14. |
3 | McDonald MK, Tian YZ, Qureshi RA, et al. Functional significance of macrophage-derived exosomes in inflammation and pain[J]. Pain, 2014, 155(8): 1527-1539. |
4 | Mountziaris PM, Spicer PP, Kasper FK, et al. Harnessing and modulating inflammation in strategies for bone regeneration[J]. Tissue Eng Part B Rev, 2011, 17(6): 393-402. |
5 | Li ZY, Wang YF, Li SL, et al. Exosomes derived from M2 macrophages facilitate osteogenesis and reduce adipogenesis of BMSCs[J]. Front Endocrinol (Lausanne), 2021, 12: 680328. |
6 | Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification[J]. Bone, 2018, 106: 78-89. |
7 | Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis[J]. Immunity, 2013, 38(1): 79-91. |
8 | Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. |
9 | Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3): 787-795. |
10 | Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes[J]. Int Immunopharmacol, 2021, 97: 107823. |
11 | Shrivastava R, Shukla N. Attributes of alternatively activated(M2) macrophages[J]. Life Sci, 2019, 224: 222-231. |
12 | Salhotra A, Shah HN, Levi B, et al. Mechanisms of bone development and repair[J]. Nat Rev Mol Cell Biol, 2020, 21(11): 696-711. |
13 | Schlundt C, Fischer H, Bucher CH, et al. The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time[J]. Acta Biomater, 2021, 133: 46-57. |
14 | Huang R, Wang X, Zhou YH, et al. RANKL-induced M1 macrophages are involved in bone formation[J]. Bone Res, 2017, 5: 17019. |
15 | Loi F, Córdova LA, Zhang R, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro [J]. Stem Cell Res Ther, 2016, 7: 15. |
16 | He D, Kou X, Yang R, et al. M1-like macrophage polarization promotes orthodontic tooth movement[J]. J Dent Res, 2015, 94(9): 1286-1294. |
17 | Wang XY, Ji QB, Hu WH, et al. Isobavachalcone prevents osteoporosis by suppressing activation of ERK and NF-κB pathways and M1 polarization of macrophages[J]. Int Immunopharmacol, 2021, 94: 107370. |
18 | Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease[J]. N Engl J Med, 2018, 379(22): 2180-2181. |
19 | Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles[J]. J Extracell Vesicles, 2014, 3: 26913. |
20 | Akbar N, Paget D, Choudhury RP. Extracellular vesicles in innate immune cell programming[J]. Biomedicines, 2021, 9(7): 713. |
21 | Garzetti L, Menon R, Finardi A, et al. Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs[J]. J Leukoc Biol, 2014, 95(5): 817-825. |
22 | Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017, 18(9): E1852. |
23 | Liu SJ, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol, 2020, 115(2): 22. |
24 | Kang MY, Huang CC, Lu Y, et al. Bone regeneration is mediated by macrophage extracellular vesicles[J]. Bone, 2020, 141: 115627. |
25 | Ge XH, Tang PY, Rong YL, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury[J]. Redox Biol, 2021, 41: 101932. |
26 | Hu YK, Wang Y, Chen TH, et al. Exosome: function and application in inflammatory bone diseases[J]. Oxid Med Cell Longev, 2021, 2021: 6324912. |
27 | Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019, 196: 80-89. |
28 | Paschalidi P, Gkouveris I, Soundia A, et al. The role of M1 and M2 macrophage polarization in progression of medication-related osteonecrosis of the jaw[J]. Clin Oral Investig, 2021, 25(5): 2845-2857. |
29 | Boldin MP, MicroRNAs Baltimore D., new effectors and regulators of NF-κB [J]. Immunol Rev, 2012, 246(1): 205-220. |
30 | Wang Z, Zhu H, Shi HT, et al. Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway[J]. Cell Death Dis, 2019, 10(6): 422. |
31 | Qi YY, Zhu TT, Zhang TT, et al. M1 macrophage-derived exosomes transfer miR-222 to induce bone marrow mesenchymal stem cell apoptosis[J]. Lab Invest, 2021, 101(10): 1318-1326. |
32 | Yu L, Hu M, Cui X, et al. M1 macrophage-derived exosomes aggravate bone loss in postmenopausal osteoporosis via a microRNA-98/DUSP1/JNK axis[J]. Cell Biol Int, 2021, 45(12): 2452-2463. |
33 | Peng SS, Yan Y, Li R, et al. Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via miR-1246 activation of the Wnt/β-catenin pathway[J]. Ann N Y Acad Sci, 2021, 1503(1): 48-59. |
34 | Jimi E, Takakura N, Hiura F, et al. The role of NF-κB in physiological bone development and inflammatory bone diseases: is NF-κB inhibition “killing two birds with one stone” [J]. Cells, 2019, 8(12): E1636. |
35 | Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines[J]. Semin Immunol, 2014, 26(3): 253-266. |
36 | Wang PP, Wang HH, Huang QQ, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation[J]. Theranostics, 2019, 9(6): 1714-1727. |
37 | He XT, Li X, Yin Y, et al. The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells[J]. J Cell Mol Med, 2018, 22(2): 1302-1315. |
38 | Xia Y, He XT, Xu XY, et al. Exosomes derived from M0, M1 and M2 macrophages exert distinct influences on the proliferation and differentiation of mesenchymal stem cells[J]. PeerJ, 2020, 8: e8970. |
39 | 朱宸佑, 魏诗敏, 汪媛婧, 等. 巨噬细胞在骨组织修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 444-448. |
Zhu CY, Wei SM, Wang YJ, et al. Research progress on macrophage in bone tissue repair[J]. Int J Stomatol, 2018, 45(4): 444-448. | |
40 | Wei F, Zhou YH, Wang J, et al. The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis[J]. Tissue Eng Part A, 2018, 24(7/8): 584-594. |
41 | Yang YH, Guo ZY, Chen WW, et al. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2[J]. Mol Ther, 2021, 29(3): 1226-1238. |
42 | Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo[J]. Cell Rep, 2020, 32(2): 107881. |
43 | Yu SH, Geng QQ, Pan QH, et al. miR-690, a Runx2-targeted miRNA, regulates osteogenic differentiation of C2C12 myogenic progenitor cells by targeting NF-kappaB p65[J]. Cell Biosci, 2016, 6: 10. |
44 | Zhang H, Zhao YY, Zhang Y, et al. Exosomes derived from macrophages upon cobalt ion stimulation promote angiogenesis[J]. Colloids Surf B Biointerfaces, 2021, 203: 111742. |
45 | Xu T, Luo YJ, Wang JX, et al. Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture healing by targeting Smad5[J]. J Nanobiotechnology, 2020, 18(1): 47. |
46 | Zhang D, Wu YF, Li ZH, et al. miR-144-5p, an exosomal miRNA from bone marrow-derived macrophage in type 2 diabetes, impairs bone fracture healing via targeting Smad1[J]. J Nanobiotechnology, 2021, 19(1): 226. |
47 | Huang XQ, Xiong XE, Liu J, et al. MicroRNAs-containing extracellular vesicles in bone remodeling: an emerging frontier[J]. Life Sci, 2020, 254: 117809. |
48 | He XT, Li X, Yin Y, et al. The effects of conditioned media generated by polarized macrophages on the ce-llular behaviours of bone marrow mesenchymal stem cells[J]. J Cell Mol Med, 2018, 22(2): 1302-1315. |
49 | Dou C, Ding N, Zhao CR, et al. Estrogen deficiency-mediated M2 macrophage osteoclastogenesis contributes to M1/M2 ratio alteration in ovariectomized osteoporotic mice[J]. J Bone Miner Res, 2018, 33(5): 899-908. |
50 | Wehrhan F, Moebius P, Amann K, et al. Macrophage and osteoclast polarization in bisphosphonate associated necrosis and osteoradionecrosis[J]. J Craniomaxillofac Surg, 2017, 45(6): 944-953. |
[1] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[2] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[3] | 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462. |
[4] | 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262. |
[5] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[6] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[7] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[8] | 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475. |
[9] | 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496. |
[10] | 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348. |
[11] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
[12] | 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26. |
[13] | 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36. |
[14] | 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93. |
[15] | 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717. |
|