国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (1): 120-126.doi: 10.7518/gjkq.2023015

• 综述 • 上一篇    

巨噬细胞源性外泌体调控骨改建的研究进展

刘艺(),刘奕()   

  1. 中国医科大学附属口腔医院正畸科 沈阳 110013
  • 收稿日期:2022-06-06 修回日期:2022-10-17 出版日期:2023-01-01 发布日期:2023-01-09
  • 通讯作者: 刘艺,刘奕
  • 作者简介:刘艺,硕士,Email:yliu@cmu.edu.cn
  • 基金资助:
    辽宁省重点研发计划项目(2020JH2/10300038)

Research progress on the regulation of bone remodeling by macrophage-derived exosomes

Liu Yi(),Liu Yi.()   

  1. Dept. of Orthodontics, The Affiliated Hospital of Stomatology, China Medical University, Shenyang 110013, China
  • Received:2022-06-06 Revised:2022-10-17 Online:2023-01-01 Published:2023-01-09
  • Contact: Yi Liu,Yi. Liu
  • Supported by:
    Liaoning Province Key Research and Development Plan Project(2020JH2/10300038)

摘要:

巨噬细胞是人体固有免疫的主要成分,与骨组织关系密切。外泌体是由所有细胞释放的纳米级囊泡,携带来源细胞的核酸等信息调节靶细胞功能。研究表明巨噬细胞释放的外泌体能够有效调节骨骼改建,通过多种方式影响微环境,进而影响成骨。本文总结巨噬细胞源性外泌体作用于骨改建的研究进展,为开发治疗策略提供参考。

关键词: 巨噬细胞, 外泌体, 骨改建, 炎症

Abstract:

Macrophages are the major components of human innate immunity and are closely related to bone tissue. Exosomes are nanoscale vesicles released by all cells, thus carrying nucleic acid and other information from the source cells to organize the function of target cells. Studies have demonstrated that macrophage-derived exosomes can effectively regulate bone remodeling, modulate the microenvironment in a variety of ways, and then affect osteogenesis. This paper summarizes the research progress onthe effect of macrophage-derived exosomes on bone remodeling to provide a reference for the development of therapeutic strategies.

Key words: macrophages, exosome, bone remodeling, inflammation

中图分类号: 

  • R 783.5

图1

M1巨噬细胞外泌体对骨改建信号通路的调节"

图 2

M2外泌体对骨改建信号通路的调节"

1 Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective[J]. Annu Rev Immunol, 2009, 27: 451-483.
2 Saradna A, Do DC, Kumar S, et al. Macrophage polarization and allergic asthma[J]. Transl Res, 2018, 191: 1-14.
3 McDonald MK, Tian YZ, Qureshi RA, et al. Functional significance of macrophage-derived exosomes in inflammation and pain[J]. Pain, 2014, 155(8): 1527-1539.
4 Mountziaris PM, Spicer PP, Kasper FK, et al. Harnessing and modulating inflammation in strategies for bone regeneration[J]. Tissue Eng Part B Rev, 2011, 17(6): 393-402.
5 Li ZY, Wang YF, Li SL, et al. Exosomes derived from M2 macrophages facilitate osteogenesis and reduce adipogenesis of BMSCs[J]. Front Endocrinol (Lausanne), 2021, 12: 680328.
6 Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification[J]. Bone, 2018, 106: 78-89.
7 Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis[J]. Immunity, 2013, 38(1): 79-91.
8 Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.
9 Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3): 787-795.
10 Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes[J]. Int Immunopharmacol, 2021, 97: 107823.
11 Shrivastava R, Shukla N. Attributes of alternatively activated(M2) macrophages[J]. Life Sci, 2019, 224: 222-231.
12 Salhotra A, Shah HN, Levi B, et al. Mechanisms of bone development and repair[J]. Nat Rev Mol Cell Biol, 2020, 21(11): 696-711.
13 Schlundt C, Fischer H, Bucher CH, et al. The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time[J]. Acta Biomater, 2021, 133: 46-57.
14 Huang R, Wang X, Zhou YH, et al. RANKL-induced M1 macrophages are involved in bone formation[J]. Bone Res, 2017, 5: 17019.
15 Loi F, Córdova LA, Zhang R, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro [J]. Stem Cell Res Ther, 2016, 7: 15.
16 He D, Kou X, Yang R, et al. M1-like macrophage polarization promotes orthodontic tooth movement[J]. J Dent Res, 2015, 94(9): 1286-1294.
17 Wang XY, Ji QB, Hu WH, et al. Isobavachalcone prevents osteoporosis by suppressing activation of ERK and NF-κB pathways and M1 polarization of macrophages[J]. Int Immunopharmacol, 2021, 94: 107370.
18 Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease[J]. N Engl J Med, 2018, 379(22): 2180-2181.
19 Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles[J]. J Extracell Vesicles, 2014, 3: 26913.
20 Akbar N, Paget D, Choudhury RP. Extracellular vesicles in innate immune cell programming[J]. Biomedicines, 2021, 9(7): 713.
21 Garzetti L, Menon R, Finardi A, et al. Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs[J]. J Leukoc Biol, 2014, 95(5): 817-825.
22 Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017, 18(9): E1852.
23 Liu SJ, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol, 2020, 115(2): 22.
24 Kang MY, Huang CC, Lu Y, et al. Bone regeneration is mediated by macrophage extracellular vesicles[J]. Bone, 2020, 141: 115627.
25 Ge XH, Tang PY, Rong YL, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-κB signaling pathway in vascular endothelial cells after traumatic spinal cord injury[J]. Redox Biol, 2021, 41: 101932.
26 Hu YK, Wang Y, Chen TH, et al. Exosome: function and application in inflammatory bone diseases[J]. Oxid Med Cell Longev, 2021, 2021: 6324912.
27 Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019, 196: 80-89.
28 Paschalidi P, Gkouveris I, Soundia A, et al. The role of M1 and M2 macrophage polarization in progression of medication-related osteonecrosis of the jaw[J]. Clin Oral Investig, 2021, 25(5): 2845-2857.
29 Boldin MP, MicroRNAs Baltimore D., new effectors and regulators of NF-κB [J]. Immunol Rev, 2012, 246(1): 205-220.
30 Wang Z, Zhu H, Shi HT, et al. Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway[J]. Cell Death Dis, 2019, 10(6): 422.
31 Qi YY, Zhu TT, Zhang TT, et al. M1 macrophage-derived exosomes transfer miR-222 to induce bone marrow mesenchymal stem cell apoptosis[J]. Lab Invest, 2021, 101(10): 1318-1326.
32 Yu L, Hu M, Cui X, et al. M1 macrophage-derived exosomes aggravate bone loss in postmenopausal osteoporosis via a microRNA-98/DUSP1/JNK axis[J]. Cell Biol Int, 2021, 45(12): 2452-2463.
33 Peng SS, Yan Y, Li R, et al. Extracellular vesicles from M1-polarized macrophages promote inflammation in the temporomandibular joint via miR-1246 activation of the Wnt/β-catenin pathway[J]. Ann N Y Acad Sci, 2021, 1503(1): 48-59.
34 Jimi E, Takakura N, Hiura F, et al. The role of NF-κB in physiological bone development and inflammatory bone diseases: is NF-κB inhibition “killing two birds with one stone” [J]. Cells, 2019, 8(12): E1636.
35 Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines[J]. Semin Immunol, 2014, 26(3): 253-266.
36 Wang PP, Wang HH, Huang QQ, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation[J]. Theranostics, 2019, 9(6): 1714-1727.
37 He XT, Li X, Yin Y, et al. The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells[J]. J Cell Mol Med, 2018, 22(2): 1302-1315.
38 Xia Y, He XT, Xu XY, et al. Exosomes derived from M0, M1 and M2 macrophages exert distinct influences on the proliferation and differentiation of mesenchymal stem cells[J]. PeerJ, 2020, 8: e8970.
39 朱宸佑, 魏诗敏, 汪媛婧, 等. 巨噬细胞在骨组织修复中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 444-448.
Zhu CY, Wei SM, Wang YJ, et al. Research progress on macrophage in bone tissue repair[J]. Int J Stomatol, 2018, 45(4): 444-448.
40 Wei F, Zhou YH, Wang J, et al. The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis[J]. Tissue Eng Part A, 2018, 24(7/8): 584-594.
41 Yang YH, Guo ZY, Chen WW, et al. M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2[J]. Mol Ther, 2021, 29(3): 1226-1238.
42 Bouchareychas L, Duong P, Covarrubias S, et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via microRNA cargo[J]. Cell Rep, 2020, 32(2): 107881.
43 Yu SH, Geng QQ, Pan QH, et al. miR-690, a Runx2-targeted miRNA, regulates osteogenic differentiation of C2C12 myogenic progenitor cells by targeting NF-kappaB p65[J]. Cell Biosci, 2016, 6: 10.
44 Zhang H, Zhao YY, Zhang Y, et al. Exosomes derived from macrophages upon cobalt ion stimulation promote angiogenesis[J]. Colloids Surf B Biointerfaces, 2021, 203: 111742.
45 Xu T, Luo YJ, Wang JX, et al. Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture healing by targeting Smad5[J]. J Nanobiotechnology, 2020, 18(1): 47.
46 Zhang D, Wu YF, Li ZH, et al. miR-144-5p, an exosomal miRNA from bone marrow-derived macrophage in type 2 diabetes, impairs bone fracture healing via targeting Smad1[J]. J Nanobiotechnology, 2021, 19(1): 226.
47 Huang XQ, Xiong XE, Liu J, et al. MicroRNAs-containing extracellular vesicles in bone remodeling: an emerging frontier[J]. Life Sci, 2020, 254: 117809.
48 He XT, Li X, Yin Y, et al. The effects of conditioned media generated by polarized macrophages on the ce-llular behaviours of bone marrow mesenchymal stem cells[J]. J Cell Mol Med, 2018, 22(2): 1302-1315.
49 Dou C, Ding N, Zhao CR, et al. Estrogen deficiency-mediated M2 macrophage osteoclastogenesis contributes to M1/M2 ratio alteration in ovariectomized osteoporotic mice[J]. J Bone Miner Res, 2018, 33(5): 899-908.
50 Wehrhan F, Moebius P, Amann K, et al. Macrophage and osteoclast polarization in bisphosphonate associated necrosis and osteoradionecrosis[J]. J Craniomaxillofac Surg, 2017, 45(6): 944-953.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[3] 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462.
[4] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[5] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[6] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[7] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[8] 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475.
[9] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[10] 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348.
[11] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
[12] 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26.
[13] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[14] 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93.
[15] 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .