国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 343-348.doi: 10.7518/gjkq.2022059
Li Guiping(),Qin Xu,Zhu Guangxun.()
摘要:
牙周病是以特殊致病菌和破坏性免疫反应相互作用导致的牙周支持组织病理性吸收为特征。腺苷酸活化蛋白激酶(AMPK)作为关键的能量调节因子,通过参与调节重要组织器官脂肪酸和葡萄糖的代谢,从而维持身体内环境的稳态,在代谢性疾病中已被广泛研究。AMPK也可以通过参与牙周骨代谢、免疫反应、基质金属蛋白酶的分泌以及细胞自噬的调节来调控牙周病的发生和发展,在牙周病发病机制中具有潜在作用,并为牙周病的治疗提供了新的治疗靶点。本文对AMPK及其在牙周病发病机制中的研究进展做一综述。
中图分类号:
1 | Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs[J]. Trends Cell Biol, 2016, 26(3): 190-201. |
2 | Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23. |
3 | Zhou RJ, Shen LL, Yang CZ, et al. Periodontitis may restrain the mandibular bone healing via disturbing osteogenic and osteoclastic balance[J]. Inflammation, 2018, 41(3): 972-983. |
4 | Liu N, Cao YG, Zhu GX. Expression of matrix metalloproteinases-2, -9 and reversion-inducing cysteine-rich protein with Kazal motifs in gingiva in periodontal health and disease[J]. Arch Oral Biol, 2017, 75: 62-67. |
5 | Jiang M, Li ZN, Zhu GX. The role of autophagy in the pathogenesis of periodontal disease[J]. Oral Dis, 2020, 26(2): 259-269. |
6 | Beg ZH, Stonik JA, Brewer HB Jr. Characterization and regulation of reductase kinase, a protein kinase that modulates the enzymic activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. Proc Natl Acad Sci U S A, 1979, 76(9): 4375-4379. |
7 | Munday MR, Campbell DG, Carling D, et al. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase[J]. Eur J Biochem, 1988, 175(2): 331-338. |
8 | Carling D. AMPK signalling in health and disease[J]. Curr Opin Cell Biol, 2017, 45: 31-37. |
9 | Tamaki N, Cristina Orihuela-Campos R, Inagaki Y, et al. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model[J]. Free Radic Biol Med, 2014, 75: 222-229. |
10 | Zhang FB, Geng Y, Zhao HY, et al. Effects of huang-lian jiedu decoration in rat gingivitis[J]. Evid Based Complement Alternat Med, 2018, 2018: 8249013. |
11 | Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis[J]. J Immunol Res, 2015, 2015: 615486. |
12 | Araújo AA, Pereira ASBF, Medeiros CACX, et al. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis[J]. PLoS One, 2017, 12(8): e0183506. |
13 | Pereira ASBF, Brito GAC, Lima MLS, et al. Metformin hydrochloride-loaded PLGA nanoparticle in periodontal disease experimental model using diabetic rats[J]. Int J Mol Sci, 2018, 19(11): E3488. |
14 | Kanno Y, Ishisaki A, Kawashita E, et al. uPA attenuated LPS-induced inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis[J]. Int J Biol Sci, 2016, 12(1): 63-71. |
15 | Kanno Y, Maruyama C, Matsuda A, et al. uPA-derived peptide, Å6 is involved in the suppression of lipopolysaccaride-promoted inflammatory osteoclastogenesis and the resultant bone loss[J]. Immun Inflamm Dis, 2017, 5(3): 289-299. |
16 | Feng Y, Liu JQ, Liu HC. AMP-activated protein kinase acts as a negative regulator of high glucose-induced RANKL expression in human periodontal ligament cells[J]. Chin Med J (Engl), 2012, 125(18): 3298-3304. |
17 | Bae WJ, Park JS, Kang SK, et al. Effects of melatonin and its underlying mechanism on ethanol-stimulated senescence and osteoclastic differentiation in human periodontal ligament cells and cementoblasts[J]. Int J Mol Sci, 2018, 19(6): E1742. |
18 | Gu DR, Lee JN, Oh GS, et al. The inhibitory effect of beta-lapachone on RANKL-induced osteoclastogenesis[J]. Biochem Biophys Res Commun, 2017, 482(4): 1073-1079. |
19 | Ma YH, Song JL, Almassri HNS, et al. Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis[J]. Drug Deliv, 2020, 27(1): 151-160. |
20 | Li H, Sun T, Liu C, et al. Photobiomodulation (450 nm) alters the infection of periodontitis bacteria via the ROS/MAPK/mTOR signaling pathway[J]. Free Radic Biol Med, 2020, 152: 838-853. |
21 | Wang P, Ma T, Guo D, et al. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells[J]. J Tissue Eng Regen Med, 2018, 12(2): 437-446. |
22 | Park KH, Cho EH, Bae WJ, et al. Role of PIN1 on in vivo periodontal tissue and in vitro cells[J]. J Periodontal Res, 2017, 52(3): 617-627. |
23 | Lee YM, Shin SI, Shin KS, et al. The role of sirtuin 1 in osteoblastic differentiation in human periodontal ligament cells[J]. J Periodontal Res, 2011, 46(6): 712-721. |
24 | Bae WJ, Auh QS, Kim GT, et al. Effects of sodium tri-and hexameta-phosphate in vitro osteoblastic differentiation in periodontal ligament and osteoblasts, and in vivo bone regeneration[J]. Differentiation, 2016, 92(5): 257-269. |
25 | Xu LY, Sun XJ, Zhu GX, et al. Local delivery of simvastatin maintains tooth anchorage during mechanical tooth moving via anti-inflammation property and AMPK/MAPK/NF-kB inhibition[J]. J Cell Mol Med, 2021, 25(1): 333-344. |
26 | Lee SY, Yi JK, Yun HM, et al. Expression of caveolin-1 in periodontal tissue and its role in osteoblastic and cementoblastic differentiation in vitro[J]. Calcif Tissue Int, 2016, 98(5): 497-510. |
27 | Liu T, Hu WY, Zou X, et al. Human periodontal ligament stem cell-derived exosomes promote bone regeneration by altering MicroRNA profiles[J]. Stem Cells Int, 2020, 2020: 8852307. |
28 | Huang LY, Sun HL, Song FF, et al. SIRT6 overexpression inhibits cementogenesis by suppressing glucose transporter 1[J]. J Cell Physiol, 2019, 234(4): 4005-4014. |
29 | Liu N, Zhou B, Zhu GX. Potential role of reversion-inducing cysteine-rich protein with kazal motifs (RECK) in regulation of matrix metalloproteinases (MMPs) expression in periodontal diseases[J]. Med Sci Monit, 2016, 22: 1936-1938. |
30 | Shindo S, Hosokawa Y, Hosokawa I, et al. Genipin inhibits MMP-1 and MMP-3 release from TNF-a-stimulated human periodontal ligament cells[J]. Biochimie, 2014, 107(Pt B): 391-395. |
31 | Yu YQ, Li XL, Mi J, et al. Resveratrol suppresses matrix metalloproteinase-2 activation induced by lipopolysaccharide in mouse osteoblasts via interactions with AMP-activated protein kinase and suppressor of cytokine signaling 1[J]. Molecules, 2018, 23(9): E2327. |
32 | Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1): 30-44. |
33 | Díaz CM, Bullon B, Ruiz-Salmerón RJ, et al. Molecular inflammation and oxidative stress are shared mechanisms involved in both myocardial infarction and periodontitis[J]. J Periodontal Res, 2020, 55(4): 519-528. |
34 | Qin X, Hoda MN, Susin C, et al. Increased innate lymphoid cells in periodontal tissue of the murine model of periodontitis: the role of AMP-activated protein kinase and relevance for the human condition[J]. Front Immunol, 2017, 8: 922. |
35 | Chin YT, Hsieh MT, Lin CY, et al. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-β-glucoside isolated from polyg-oni multiflori ameliorates the development of periodontitis[J]. Mediators Inflamm, 2016, 2016: 6953459. |
36 | Ramos-Junior ES, Pedram M, Lee RE, et al. CD73-dependent adenosine dampens interleukin-1β-induced CXCL8 production in gingival fibroblasts: association with heme oxygenase-1 and adenosine monophosphate-activated protein kinase[J]. J Periodontol, 2020, 91(2): 253-262. |
37 | Jeong GS, Lee DS, Li B, et al. Anti-inflammatory effects of lindenenyl acetate via heme oxygenase-1 and AMPK in human periodontal ligament cells[J]. Eur J Pharmacol, 2011, 670(1): 295-303. |
38 | Hagio-Izaki K, Yasunaga M, Yamaguchi M, et al. Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus[J]. BMC Cell Biol, 2018, 19(1): 18. |
39 | Vidoni C, Ferraresi A, Secomandi E, et al. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells[J]. Cell Commun Signal, 2019, 17(1): 98. |
40 | Evans M, Murofushi T, Tsuda H, et al. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death[J]. J Periodontal Res, 2017, 52(3): 522-531. |
41 | Yang Z, Gao X, Zhou MJ, et al. Effect of metformin on human periodontal ligament stem cells cultured with polydopamine-templated hydroxyapatite[J]. Eur J Oral Sci, 2019, 127(3): 210-221. |
42 | Pei CZ, Zhang Y, Wang P, et al. Berberine alleviates oxidized low-density lipoprotein-induced macrophage activation by downregulating galectin-3 via the NF-κB and AMPK signaling pathways[J]. Phytother Res, 2019, 33(2): 294-308. |
43 | Soltani A, Salmaninejad A, Jalili-Nik M, et al. 5'-Adenosine monophosphate-activated protein kinase: a potential target for disease prevention by curcumin[J]. J Cell Physiol, 2019, 234(3): 2241-2251. |
44 | Meng HY, Shao DC, Li H, et al. Resveratrol improves neurological outcome and neuroinflammation following spinal cord injury through enhancing autophagy involving the AMPK/mTOR pathway[J]. Mol Med Rep, 2018, 18(2): 2237-2244. |
[1] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[2] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[3] | 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462. |
[4] | 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262. |
[5] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[6] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
[7] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[8] | 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36. |
[9] | 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730. |
[10] | 叶玉琳,江莉婷,高益鸣. 舍格伦综合征唾液腺中自噬现象的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 556-560. |
[11] | 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475. |
[12] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
[13] | 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26. |
[14] | 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93. |
[15] | 穆新月,刘树泰. 动机性访谈在牙周病患者临床管理中的应用进展[J]. 国际口腔医学杂志, 2022, 49(1): 94-99. |
|