国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (1): 19-24.doi: 10.7518/gjkq.2023020
Liu Tiqian(),Liang Xing(),Liu Weiqing,Li Xiaohong,Zhu Rui.
摘要:
牙周炎是成人失牙的首要原因,严重影响患者的身心健康。研究表明,单纯的咬合创伤不会导致牙周炎,但在炎症状态下咬合创伤能够促进牙周炎的发生发展,因此咬合创伤是牙周炎的危险因素之一。本文就咬合创伤在牙周炎发生发展中的炎症促进、成骨抑制和破骨激活三方面的作用及其相关分子机制作一综述。
中图分类号:
1 | Frencken JE, Sharma P, Stenhouse L, et al. Global epidemiology of dental caries and severe periodontitis-a comprehensive review[J]. J Clin Periodontol, 2017, 44(): S94-S105. |
2 | Ma QY, Ma ZS, Liang MM, et al. The role of physical forces in osteoclastogenesis[J]. J Cell Physiol, 2019, 234(8): 12498-12507. |
3 | Li L, Han MX, Li S, et al. Cyclic tensile stress du-ring physiological occlusal force enhances osteoge-nic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway[J]. DNA Cell Biol, 2013, 32(9): 488-497. |
4 | Zhu R, Zhang ZH, Lu BY, et al. Unloading of occlusal force aggravates alveolar bone loss in periodontitis[J]. J Periodontal Res, 2022, 57(5): 1070-1082. |
5 | Naert I, Duyck J, Vandamme K. Occlusal overload and bone/implant loss[J]. Clin Oral Implants Res, 2012, 23(): 95-107. |
6 | Fan JY, Caton JG. Occlusal trauma and excessive occlusal forces: narrative review, case definitions, and diagnostic considerations[J]. J Periodontol, 2018, 89(): S214-S222. |
7 | Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis[J]. Nat Rev Microbiol, 2012, 10(10): 717-725. |
8 | Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response[J]. Trends Immunol, 2014, 35(1): 3-11. |
9 | Usui M, Onizuka S, Sato T, et al. Mechanism of alveolar bone destruction in periodontitis-periodontal bacteria and inflammation[J]. Jpn Dent Sci Rev, 2021, 57: 201-208. |
10 | Martínez-García M, Hernández-Lemus E. Periodontal inflammation and systemic diseases: an overview[J]. Front Physiol, 2021, 12: 709438. |
11 | Passanezi E, Sant’Ana ACP. Role of occlusion in periodontal disease[J]. Periodontol 2000, 2019, 79(1): 129-150. |
12 | 祁海龙, 王斯璐. 慢性牙周炎伴咬合创伤患者龈沟液炎性因子表达及与骨代谢指标的相关性研究[J]. 现代检验医学杂志, 2021, 36(5): 164-168. |
Qi HL, Wang SL. Expression of inflammatory factors in gingival crevicular fluid and its correlation with bone metabolism in patients with chronic pe-riodontitis and occlusal Trauma [J]. J Mod Lab Med, 2021, 36(5): 164-168. | |
13 | Zhou SY, Mahmood H, Cao CF, et al. Teeth under high occlusal force may reflect occlusal trauma-associated periodontal conditions in subjects with untreated chronic periodontitis[J]. Chin J Dent Res, 2017, 20(1): 19-26. |
14 | Iwata M, Saito A, Kuroda Y, et al. Interdisciplinary therapy for severe periodontitis with Angle class Ⅱdivision 1 malocclusion: a case report with 7-year fo-llow-up[J]. J Am Dent Assoc, 2019, 150(11): 960-971. |
15 | Inchingolo AD, di Cosola M, Inchingolo AM, et al. Correlation between occlusal trauma and oral microbiota: a microbiological investigation[J]. J Biol Regul Homeost Agents, 2021, 35(2 ): 295-302. |
16 | Yoshinaga Y, Ukai T, Abe Y, et al. Expression of receptor activator of nuclear factor kappa B ligand relates to inflammatory bone resorption, with or without occlusal trauma, in rats[J]. J Periodontal Res, 2007, 42(5): 402-409. |
17 | Nakatsu S, Yoshinaga Y, Kuramoto A, et al. Occlusal trauma accelerates attachment loss at the onset of experimental periodontitis in rats[J]. J Periodontal Res, 2014, 49(3): 314-322. |
18 | Jia R, Yi YJ, Liu J, et al. Cyclic compression emerged dual effects on the osteogenic and osteoclastic status of LPS-induced inflammatory human periodontal ligament cells according to loading force[J]. BMC Oral Health, 2020, 20(1): 7. |
19 | El-Awady AR, Lapp CA, Gamal AY, et al. Human periodontal ligament fibroblast responses to compression in chronic periodontitis[J]. J Clin Periodontol, 2013, 40(7): 661-671. |
20 | Römer P, Köstler J, Koretsi V, et al. Endotoxins potentiate COX-2 and RANKL expression in compressed PDL cells[J]. Clin Oral Investig, 2013, 17(9): 2041-2048. |
21 | Li Y, Ling JQ, Jiang QZ. Inflammasomes in alveolar bone loss[J]. Front Immunol, 2021, 12: 691013. |
22 | DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer[J]. Immunol Rev, 2012, 246(1): 379-400. |
23 | Xu WZ, Lu Y, Yue JL, et al. Occlusal trauma inhi-bits osteoblast differentiation and bone formation through IKK-NF-κB signaling[J]. J Periodontol, 2020, 91(5): 683-692. |
24 | Lim WH, Liu B, Mah SJ, et al. Alveolar bone turnover and periodontal ligament width are controlled by Wnt[J]. J Periodontol, 2015, 86(2): 319-326. |
25 | Chang J, Sonoyama W, Wang Z, et al. Noncanonical Wnt-4 signaling enhances bone regeneration of me-senchymal stem cells in craniofacial defects through activation of p38 MAPK[J]. J Biol Chem, 2007, 282(42): 30938-30948. |
26 | Xu WZ, Lu Q, Qu MY, et al. Wnt4 regulates bone metabolism through IKK-NF-κB and ROCK signa-ling under occlusal traumatic periodontitis[J]. J Pe-riodontal Res, 2022, 57(3): 461-469. |
27 | Jia Q, Jiang WK, Ni LX. Down-regulated non-co-ding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells[J]. Arch Oral Biol, 2015, 60(2): 234-241. |
28 | Lu Q, Xu WZ, Liu LY, et al. Traumatic compressive stress inhibits osteoblast differentiation through long chain non-coding RNA Dancr[J]. J Periodontol, 2020, 91(11): 1532-1540. |
29 | Zhu L, Xu PC. Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression[J]. Biochem Biophys Res Commun, 2013, 432(4): 612-617. |
30 | Grigoriadis AE, Wang ZQ, Cecchini MG, et al. C-Fos: a key regulator of osteoclast-macrophage li-neage determination and bone remodeling[J]. S-cience, 1994, 266(5184): 443-448. |
31 | Wang Y, Wang HY, Ye QS, et al. Co-regulation of LPS and tensile strain downregulating osteogenicity via c-fos expression[J]. Life Sci, 2013, 93(1): 38-43. |
32 | Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical periodontology[J]. J Clin Periodontol, 2012, 39(3): 239-248. |
33 | Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal[J]. Nat Cell Biol, 2011, 13(8): 877-883. |
34 | Pan WY, Yang L, Li JL, et al. Traumatic occlusion aggravates bone loss during periodontitis and activates Hippo-YAP pathway[J]. J Clin Periodontol, 2019, 46(4): 438-447. |
35 | Wei W, Xue LL, Tan LY, et al. Inhibition of yes-associated protein dephosphorylation prevents aggravated periodontitis with occlusal trauma[J]. J Pe-riodontol, 2021, 92(7): 1036-1048. |
36 | Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy[J]. Pharmacol Ther, 2022, 232: 108010. |
37 | Cheng R, Liu W, Zhang R, et al. Porphyromonas gingivalis-derived lipopolysaccharide combines hypoxia to induce caspase-1 activation in periodontitis[J]. Front Cell Infect Microbiol, 2017, 7: 474. |
38 | Jiang MY, Shang ZZ, Zhang T, et al. Study on the role of pyroptosis in bone resorption induced by occlusal trauma with or without periodontitis[J]. J Pe-riodontal Res, 2022, 57(3): 448-460. |
39 | Tang KM, Chen W, Tang ZH, et al. Role of the Hippo-YAP/NF-κB signaling pathway crosstalk in regulating biological behaviors of macrophages under titanium ion exposure[J]. J Appl Toxicol, 2021, 41(4): 561-571. |
40 | Park HW, Kim YC, Yu B, et al. Alternative wnt signaling activates YAP/TAZ[J]. Cell, 2015, 162(4): 780-794. |
41 | Xiong JH, Almeida M, O'Brien CA. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation[J]. Bone, 2018, 112: 1-9. |
42 | 廖安琪, 杨仁丽, 杨醒眉. 种植体周围炎的免疫应答机制及其影响因素的研究进展[J]. 口腔医学, 2021, 41(12): 1143-1147. |
Liao AQ, Yang RL, Yang XM. Research progress of the mechanism of immune response and influencing factors of peri-implantitis[J]. Stomatology, 2021, 41(12): 1143-1147. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[3] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[4] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[5] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[6] | 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462. |
[7] | 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262. |
[8] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[9] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
[10] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[11] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[12] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[13] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[14] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[15] | 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475. |
|