国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (1): 36-44.doi: 10.7518/gjkq.2024006

• 口腔肿瘤学专栏 • 上一篇    下一篇

铁死亡在口腔疾病中的研究进展

傅豫(),何薇,黄兰()   

  1. 重庆医科大学附属口腔医院正畸科 口腔疾病与生物医学重庆市重点实验室重庆市高校市级口腔生物医学工程重点实验室 重庆 401147
  • 收稿日期:2023-04-23 修回日期:2023-08-30 出版日期:2024-01-01 发布日期:2024-01-10
  • 通讯作者: 黄兰
  • 作者简介:傅豫,硕士,Email:<email>2022120653@stu.cqmu.edu.cn</email>
  • 基金资助:
    国家自然科学基金(82170989);重庆市自然科学基金(CSTB2022NSCQ-MSX0794)

Ferroptosis and its implication in oral diseases

Fu Yu(),He Wei,Huang Lan()   

  1. Dept. of Orthodontics, Stomatological Hospital of Chongqing Medical University & Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
  • Received:2023-04-23 Revised:2023-08-30 Online:2024-01-01 Published:2024-01-10
  • Contact: Lan Huang
  • Supported by:
    National Natural Science Foundation of China(82170989);Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0794)

摘要:

铁死亡是一种可调控的,具有铁依赖性的,由脂质过氧化驱动的细胞死亡形式,是一种重要的细胞死亡形式,在多种疾病中发挥着重要作用。目前铁死亡在癌症、缺血/再灌注损伤疾病、各类神经退行性疾病等方面的研究取得了一定的成果,在口腔疾病中的作用也越来越受关注。铁死亡是口腔癌的新兴治疗靶点。许多炎症损伤疾病与铁死亡相关,牙周炎作为一种慢性炎症性疾病,与铁死亡的发生过程可能存在一定的相关性。本文就目前铁死亡与口腔疾病的相关研究及发现进行综述,旨在为探索口腔疾病的发病机制和诊疗提供参考。

关键词: 铁死亡, 口腔疾病, 口腔癌, 牙周炎, 肿瘤治疗

Abstract:

Ferroptosis is a regulated, iron-dependent form of cell death driven by lipid peroxidation and plays an important role in a variety of diseases. It has been studied in cancer, ischemia/reperfusion injury diseases, and neurodegenerative diseases. As an important form of cell death, ferroptosis has received increasing attention in oral disease research. Some advances have been achieved in related studies. Ferroptosis has become an emerging therapeutic target for oral cancer and has been associated with many inflammatory injury diseases. As a chronic inflammatory disease, periodontitis may have some correlation with ferroptosis. This work reviews current findings on ferroptosis to provide a reference for the mechanism, diagnosis, and treatment of related oral diseases.

Key words: ferroptosis, oral disease, oral cancer, periodontitis, cancer therapy

中图分类号: 

  • R782.4

表 1

OSCC靶向治疗有关的铁死亡研究"

干预/靶向基因OSCC细胞系/组织样本相关表现参考文献
鼠尾草酸、Nrf2/HO-1/xCT途径SCC9-DDP和 CAL27-DDP 细胞(顺铂抵抗细胞)用鼠尾草酸处理顺铂耐药的OSCC细胞会降低GSH水平,增加ROS和脂质过氧化水平;这种作用可被liproxstatin-1逆转[13]
奎诺司他(quisinostat)CAL-27和TCA-8113细胞细胞的线粒体缩小且萎缩,线粒体嵴减少甚至缺失,线粒体膜密度增加,细胞内ROS水平增加,GPX4下调[14]
大黄根酚(chrysophanol)FaDu和SAS细胞ROS积聚,GPX4水平降低[15]
非热等离子体(non-thermal plasma)SAS和Ca9-22细胞细胞内发生了脂质过氧化,细胞内ROS水平、线粒体内ROS水平升高;非热等离子体所致的癌细胞死亡可被事先应用的FAC所促进,并被DFO所抑制[16]
PDT加Ce6-ErastinCAL-27 细胞细胞内ROS过度积聚,氧浓度增加,SLC7A11表达受到抑制[17]
circFNDC3B、miR-520d-5p32份 OSCC 样本,CAL27 和SCC15细胞系通过shRNA沉默circFNDC3B可以抑制GPX4和SLC7A11的表达,增强OSCC细胞中的ROS、铁和Fe(Ⅱ)水平;CircFNDC3B敲除加强了Erastin诱导的对OSCC细胞的生长抑制作用[19]
EZH2、SLC7A11、MiR-125b-5p20份TSCC样本,SCC9和CAL27细胞系EZH2和SLC7A11过量表达抑制了Erastin诱导的TSCC细胞的铁死亡,伴丙二醛水平和Fe(Ⅱ)水平降低[20]
miR-34c-3p43份OSCC样本,SCC-25和CAL27细胞miR34c-3p过表达使细胞中的ROS、丙二醛、Fe(Ⅱ)水平上升,GSH和GPX4水平降低,且可被Fer-1抑制[21]
PER1OSCCSCC15 和CAL27 细胞系过表达PER1,GPX4、SLC7A11和GSH水平降低,运铁蛋白受体、丙二醛、ROS和Fe(Ⅱ)水平升高,线粒体皱缩,膜密度增加,线粒体嵴减少;沉默PER1,GPX4、SLC7A11和GSH水平升高,运铁蛋白受体、丙二醛、ROS和Fe(Ⅱ)水平降低,线粒体无明显形态学改变[22]
IL-6/STAT3/xCT129份HNSCC样本,12份黏膜白斑病样本,HN4和CAL27细胞沉默xCT,细胞线粒体皱缩,线粒体嵴减少;细胞内Fe(Ⅱ)增多,脂质过氧化水平增加,GSH水平降低[23]
AEBP1CAL27,SCC15和CAR(顺铂耐药细胞)细胞系沉默AEBP1增强了由SSZ诱导的细胞内ROS、游离铁、丙二醛表达水平升高,FTH1、GPX4和SLC7A11表达水平降低,环氧合酶2表达水平升高[24]
1 Gao MH, Monian P, Pan QH, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021-1032.
2 Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
3 Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49.
4 Balachander K, Paramasivam A. Ferroptosis: an emerging therapeutic target for oral cancer[J]. Oral Oncol, 2022, 131: 105970.
5 Stockwell BR. Ferroptosis turns 10: emerging me-chanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421.
6 Tang DL, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125.
7 Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3): 420-432.e9.
8 Zilka O, Shah R, Li B, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death[J]. ACS Cent Sci, 2017, 3(3): 232-243.
9 Guo C, Wang T, Zheng W, et al. Intranasal defero-xamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease[J]. Neurobiol Aging, 2013, 34(2): 562-575.
10 Chen KX, Ma SY, Deng JW, et al. Ferroptosis: a new development trend in periodontitis[J]. Cells, 2022, 11(21): 3349.
11 Kwon HK, Kim JM, Shin SC, et al. The mechanism of submandibular gland dysfunction after menopause may be associated with the ferroptosis[J]. A-ging (Albany NY), 2020, 12(21): 21376-21390.
12 谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287.
Xie ZH, Hua QQ. Research progress of ferroptosis in head and neck squamous cell carcinoma[J]. Cancer Res Prev Treat, 2022, 49(4): 282-287.
13 Han L, Li L, Wu G. Induction of ferroptosis by carnosic acid-mediated inactivation of Nrf2/HO-1 potentiates cisplatin responsiveness in OSCC cells[J]. Mol Cell Probes, 2022, 64: 101821.
14 Wang XH, Liu K, Gong HM, et al. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis[J]. Toxicol Appl Pharmacol, 2021, 410: 115363.
15 Ya-Hsuan L, Valeria C, Chun-Yen H, et al. Promotion of ferroptosis in oral cancer cell lines by chrysophanol[J]. Curr Top Nutraceutical Res, 2020, 18(3): 273-276.
16 Sato K, Shi L, Ito F, et al. Non-thermal plasma specifically kills oral squamous cell carcinoma cells in a catalytic Fe( Ⅱ )-dependent manner[J]. J Clin Biochem Nutr, 2019, 65(1): 8-15.
17 Zhu T, Shi LL, Yu CY, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment[J]. Theranostics, 2019, 9(11): 3293-3307.
18 Hsieh PL, Chao SC, Chu PM, et al. Regulation of ferroptosis by non-coding RNAs in head and neck cancers[J]. Int J Mol Sci, 2022, 23(6): 3142.
19 Yang J, Cao XH, Luan KF, et al. Circular RNA FNDC3B protects oral squamous cell carcinoma cells from ferroptosis and contributes to the malignant progression by regulating miR-520d-5p/SLC7A-11 axis[J]. Front Oncol, 2021, 11: 672724.
20 Yu Y, MohamedAl-Sharani H, Zhang B. EZH2-mediated SLC7A11 upregulation via miR-125b-5p represses ferroptosis of TSCC[J]. Oral Dis, 2023, 29(3): 880-891.
21 Sun K, Ren WH, Li SM, et al. MiR-34c-3p upregulates erastin-induced ferroptosis to inhibit proliferation in oral squamous cell carcinomas by targeting SLC7A11[J]. Pathol Res Pract, 2022, 231: 153778.
22 Yang YX, Tang H, Zheng JW, et al. The PER1/HIF-1alpha negative feedback loop promotes ferroptosis and inhibits tumor progression in oral squamous cell carcinoma[J]. Transl Oncol, 2022, 18: 101360.
23 Li MY, Jin SF, Zhang ZY, et al. Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma[J]. Cancer Lett, 2022, 527: 28-40.
24 Zhou QW, Wang XQ, Zhang YX, et al. Inhibition of AEBP1 predisposes cisplatin-resistant oral cancer cells to ferroptosis[J]. BMC Oral Health, 2022, 22(1): 478.
25 晏子钦, 魏明波, 程波. 基于铁死亡相关基因的口腔鳞状细胞癌的生物信息学分析[J]. 临床口腔医学杂志, 2022, 38(1): 19-22.
Yan ZQ, Wei MB, Cheng B. Bioinformatics analysis of oral squamous cell carcinoma based on the expression of ferroptosis-related genes[J]. J Clin Stomatol, 2022, 38(1): 19-22.
26 吴莹莹, 孙越, 邹燕梅, 等. 筛选影响口腔鳞状细胞癌预后的铁死亡相关lncRNAs并构建预后风险模型[J]. 临床口腔医学杂志, 2021, 37(9): 535-538.
Wu YY, Sun Y, Zou YM, et al. Screening ferroptosis-related lncRNAs that affect the prognosis of oral squamous cell carcinoma and constructing a prognostic risk model[J]. J Clin Stomatol, 2021, 37(9): 535-538.
27 Huang C, Zhan L. Network pharmacology identifies therapeutic targets and the mechanisms of glutat-hione action in ferroptosis occurring in oral cancer[J]. Front Pharmacol, 2022, 13: 851540.
28 Gu WC, Kim M, Wang L, et al. Multi-omics analys-is of ferroptosis regulation patterns and characterization of tumor microenvironment in patients with oral squamous cell carcinoma[J]. Int J Biol Sci, 2021, 17(13): 3476-3492.
29 Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and propo-sal of a new classification and case definition[J]. J Clin Periodontol, 2018, 45(): S149-S161.
30 Yao C, Lan DM, Li X, et al. Porphyromonas gingivalis is a risk factor for the development of nonalcoholic fatty liver disease via ferroptosis[J]. Microbes Infect, 2023, 25(1/2): 105040.
31 Liu SX, Butler CA, Ayton S, et al. Porphyromonas gingivalis and the pathogenesis of Alzheimer’s di-sease[J]. Crit Rev Microbiol, 2023: 1-11.
32 Qiao SW, Li BS, Cai Q, et al. Involvement of ferroptosis in Porphyromonas gingivalis lipopolysaccharide-stimulated periodontitis in vitro and in vivo [J]. Oral Dis, 2023, 29(8): 3571-3582.
33 Bullon P, Cordero MD, Quiles JL, et al. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis[J]. Free Radic Biol Med, 2011, 50(10): 1336-1343.
34 Yang WY, Meng X, Wang YR, et al. PRDX6 alle-viates lipopolysaccharide-induced inflammation and ferroptosis in periodontitis[J]. Acta Odontol Scand, 2022, 80(7): 535-546.
35 Wang HW, Qiao XT, Zhang C, et al. Long non-coding RNA LINC00616 promotes ferroptosis of periodontal ligament stem cells via the microRNA-370/transferrin receptor axis[J]. Bioengineered, 2022, 13(5): 13070-13081.
36 Lu R, Meng H, Gao X, et al. Effect of non-surgical periodontal treatment on short chain fatty acid le-vels in gingival crevicular fluid of patients with ge-neralized aggressive periodontitis[J]. J Periodontal Res, 2014, 49(5): 574-583.
37 Zhao YH, Li J, Guo W, et al. Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy[J]. Cell Death Discov, 2020, 6(1): 119.
38 Zhang CR, Xue PX, Ke JG, et al. Development of ferroptosis-associated ceRNA network in periodontitis[J]. Int Dent J, 2023, 73(2): 186-194.
39 Pan SY, Hu B, Sun JC, et al. Identification of cross-talk pathways and ferroptosis-related genes in pe-riodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation[J]. Front Immunol, 2022, 13: 1015491.
40 Leite-Lima F, Bastos VC, Vitório JG, et al. Unvei-ling metabolic changes in marsupialized odontoge-nic keratocyst: a pilot study[J]. Oral Dis, 2022, 28(8): 2219-2229.
41 Zhou H, Zhou YL, Mao JA, et al. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells[J]. Redox Biol, 2022, 55: 102413.
[1] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[2] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[3] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[4] 姜玥莹,何宇添,李婷,周蓉卉. 近红外荧光探针在口腔癌诊断中应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 407-413.
[5] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[6] 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328.
[7] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[8] 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145.
[9] 王太萍,石兴莲,李喆臻,刘梅,姜健红. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209.
[10] 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216.
[11] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[12] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[13] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[14] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[15] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .