国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (1): 36-44.doi: 10.7518/gjkq.2024006
摘要:
铁死亡是一种可调控的,具有铁依赖性的,由脂质过氧化驱动的细胞死亡形式,是一种重要的细胞死亡形式,在多种疾病中发挥着重要作用。目前铁死亡在癌症、缺血/再灌注损伤疾病、各类神经退行性疾病等方面的研究取得了一定的成果,在口腔疾病中的作用也越来越受关注。铁死亡是口腔癌的新兴治疗靶点。许多炎症损伤疾病与铁死亡相关,牙周炎作为一种慢性炎症性疾病,与铁死亡的发生过程可能存在一定的相关性。本文就目前铁死亡与口腔疾病的相关研究及发现进行综述,旨在为探索口腔疾病的发病机制和诊疗提供参考。
中图分类号:
1 | Gao MH, Monian P, Pan QH, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021-1032. |
2 | Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. |
3 | Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. |
4 | Balachander K, Paramasivam A. Ferroptosis: an emerging therapeutic target for oral cancer[J]. Oral Oncol, 2022, 131: 105970. |
5 | Stockwell BR. Ferroptosis turns 10: emerging me-chanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. |
6 | Tang DL, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. |
7 | Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3): 420-432.e9. |
8 | Zilka O, Shah R, Li B, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death[J]. ACS Cent Sci, 2017, 3(3): 232-243. |
9 | Guo C, Wang T, Zheng W, et al. Intranasal defero-xamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease[J]. Neurobiol Aging, 2013, 34(2): 562-575. |
10 | Chen KX, Ma SY, Deng JW, et al. Ferroptosis: a new development trend in periodontitis[J]. Cells, 2022, 11(21): 3349. |
11 | Kwon HK, Kim JM, Shin SC, et al. The mechanism of submandibular gland dysfunction after menopause may be associated with the ferroptosis[J]. A-ging (Albany NY), 2020, 12(21): 21376-21390. |
12 | 谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287. |
Xie ZH, Hua QQ. Research progress of ferroptosis in head and neck squamous cell carcinoma[J]. Cancer Res Prev Treat, 2022, 49(4): 282-287. | |
13 | Han L, Li L, Wu G. Induction of ferroptosis by carnosic acid-mediated inactivation of Nrf2/HO-1 potentiates cisplatin responsiveness in OSCC cells[J]. Mol Cell Probes, 2022, 64: 101821. |
14 | Wang XH, Liu K, Gong HM, et al. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis[J]. Toxicol Appl Pharmacol, 2021, 410: 115363. |
15 | Ya-Hsuan L, Valeria C, Chun-Yen H, et al. Promotion of ferroptosis in oral cancer cell lines by chrysophanol[J]. Curr Top Nutraceutical Res, 2020, 18(3): 273-276. |
16 | Sato K, Shi L, Ito F, et al. Non-thermal plasma specifically kills oral squamous cell carcinoma cells in a catalytic Fe( Ⅱ )-dependent manner[J]. J Clin Biochem Nutr, 2019, 65(1): 8-15. |
17 | Zhu T, Shi LL, Yu CY, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment[J]. Theranostics, 2019, 9(11): 3293-3307. |
18 | Hsieh PL, Chao SC, Chu PM, et al. Regulation of ferroptosis by non-coding RNAs in head and neck cancers[J]. Int J Mol Sci, 2022, 23(6): 3142. |
19 | Yang J, Cao XH, Luan KF, et al. Circular RNA FNDC3B protects oral squamous cell carcinoma cells from ferroptosis and contributes to the malignant progression by regulating miR-520d-5p/SLC7A-11 axis[J]. Front Oncol, 2021, 11: 672724. |
20 | Yu Y, MohamedAl-Sharani H, Zhang B. EZH2-mediated SLC7A11 upregulation via miR-125b-5p represses ferroptosis of TSCC[J]. Oral Dis, 2023, 29(3): 880-891. |
21 | Sun K, Ren WH, Li SM, et al. MiR-34c-3p upregulates erastin-induced ferroptosis to inhibit proliferation in oral squamous cell carcinomas by targeting SLC7A11[J]. Pathol Res Pract, 2022, 231: 153778. |
22 | Yang YX, Tang H, Zheng JW, et al. The PER1/HIF-1alpha negative feedback loop promotes ferroptosis and inhibits tumor progression in oral squamous cell carcinoma[J]. Transl Oncol, 2022, 18: 101360. |
23 | Li MY, Jin SF, Zhang ZY, et al. Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma[J]. Cancer Lett, 2022, 527: 28-40. |
24 | Zhou QW, Wang XQ, Zhang YX, et al. Inhibition of AEBP1 predisposes cisplatin-resistant oral cancer cells to ferroptosis[J]. BMC Oral Health, 2022, 22(1): 478. |
25 | 晏子钦, 魏明波, 程波. 基于铁死亡相关基因的口腔鳞状细胞癌的生物信息学分析[J]. 临床口腔医学杂志, 2022, 38(1): 19-22. |
Yan ZQ, Wei MB, Cheng B. Bioinformatics analysis of oral squamous cell carcinoma based on the expression of ferroptosis-related genes[J]. J Clin Stomatol, 2022, 38(1): 19-22. | |
26 | 吴莹莹, 孙越, 邹燕梅, 等. 筛选影响口腔鳞状细胞癌预后的铁死亡相关lncRNAs并构建预后风险模型[J]. 临床口腔医学杂志, 2021, 37(9): 535-538. |
Wu YY, Sun Y, Zou YM, et al. Screening ferroptosis-related lncRNAs that affect the prognosis of oral squamous cell carcinoma and constructing a prognostic risk model[J]. J Clin Stomatol, 2021, 37(9): 535-538. | |
27 | Huang C, Zhan L. Network pharmacology identifies therapeutic targets and the mechanisms of glutat-hione action in ferroptosis occurring in oral cancer[J]. Front Pharmacol, 2022, 13: 851540. |
28 | Gu WC, Kim M, Wang L, et al. Multi-omics analys-is of ferroptosis regulation patterns and characterization of tumor microenvironment in patients with oral squamous cell carcinoma[J]. Int J Biol Sci, 2021, 17(13): 3476-3492. |
29 | Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: framework and propo-sal of a new classification and case definition[J]. J Clin Periodontol, 2018, 45(): S149-S161. |
30 | Yao C, Lan DM, Li X, et al. Porphyromonas gingivalis is a risk factor for the development of nonalcoholic fatty liver disease via ferroptosis[J]. Microbes Infect, 2023, 25(1/2): 105040. |
31 | Liu SX, Butler CA, Ayton S, et al. Porphyromonas gingivalis and the pathogenesis of Alzheimer’s di-sease[J]. Crit Rev Microbiol, 2023: 1-11. |
32 | Qiao SW, Li BS, Cai Q, et al. Involvement of ferroptosis in Porphyromonas gingivalis lipopolysaccharide-stimulated periodontitis in vitro and in vivo [J]. Oral Dis, 2023, 29(8): 3571-3582. |
33 | Bullon P, Cordero MD, Quiles JL, et al. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis[J]. Free Radic Biol Med, 2011, 50(10): 1336-1343. |
34 | Yang WY, Meng X, Wang YR, et al. PRDX6 alle-viates lipopolysaccharide-induced inflammation and ferroptosis in periodontitis[J]. Acta Odontol Scand, 2022, 80(7): 535-546. |
35 | Wang HW, Qiao XT, Zhang C, et al. Long non-coding RNA LINC00616 promotes ferroptosis of periodontal ligament stem cells via the microRNA-370/transferrin receptor axis[J]. Bioengineered, 2022, 13(5): 13070-13081. |
36 | Lu R, Meng H, Gao X, et al. Effect of non-surgical periodontal treatment on short chain fatty acid le-vels in gingival crevicular fluid of patients with ge-neralized aggressive periodontitis[J]. J Periodontal Res, 2014, 49(5): 574-583. |
37 | Zhao YH, Li J, Guo W, et al. Periodontitis-level butyrate-induced ferroptosis in periodontal ligament fibroblasts by activation of ferritinophagy[J]. Cell Death Discov, 2020, 6(1): 119. |
38 | Zhang CR, Xue PX, Ke JG, et al. Development of ferroptosis-associated ceRNA network in periodontitis[J]. Int Dent J, 2023, 73(2): 186-194. |
39 | Pan SY, Hu B, Sun JC, et al. Identification of cross-talk pathways and ferroptosis-related genes in pe-riodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation[J]. Front Immunol, 2022, 13: 1015491. |
40 | Leite-Lima F, Bastos VC, Vitório JG, et al. Unvei-ling metabolic changes in marsupialized odontoge-nic keratocyst: a pilot study[J]. Oral Dis, 2022, 28(8): 2219-2229. |
41 | Zhou H, Zhou YL, Mao JA, et al. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells[J]. Redox Biol, 2022, 55: 102413. |
[1] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[2] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[3] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[4] | 姜玥莹,何宇添,李婷,周蓉卉. 近红外荧光探针在口腔癌诊断中应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 407-413. |
[5] | 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478. |
[6] | 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328. |
[7] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[8] | 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145. |
[9] | 王太萍,石兴莲,李喆臻,刘梅,姜健红. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209. |
[10] | 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216. |
[11] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[12] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[13] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[14] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[15] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
|