国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (2): 138-145.doi: 10.7518/gjkq.2023019

• 人工智能专栏 • 上一篇    下一篇

人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展

林慧平(),徐婷,林军()   

  1. 浙江大学医学院附属第一医院口腔科 杭州 310003
  • 收稿日期:2022-06-12 修回日期:2022-10-14 出版日期:2023-03-01 发布日期:2023-03-14
  • 通讯作者: 林军
  • 作者简介:林慧平,副主任医师,博士,Email:linhp@zju.edu.cn
  • 基金资助:
    国家自然科学基金(81970978);浙江省自然科学基金(LQ-20H140007)

Research progress on artificial intelligence techniques in diagnosis of oral cancer and potentially malignant disorders

Lin Huiping(),Xu Ting,Lin Jun.()   

  1. Dept. of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2022-06-12 Revised:2022-10-14 Online:2023-03-01 Published:2023-03-14
  • Contact: Jun. Lin
  • Supported by:
    National Natural Science Foundation of China(81970978);Natural Science Foundation of Zhejiang Province(LQ20H140007)

摘要:

口腔癌是一个相当普遍的全球健康问题,发病率和死亡率逐年上升。加强对口腔癌的早发现、早诊断,特别是防控在口腔潜在恶性疾病(OPMD)阶段,是实现降低口腔癌发病率和死亡率的关键。然而,口腔癌及OPMD的筛查和早期诊断是一项艰巨的医学任务,缺乏简便易行的诊断方法。基于人工智能的口腔医学图像的检测和诊断技术为此提供了新的思路和方法。本文将从组织病理学图像、共聚焦激光显微内镜图像、高光谱成像、自体荧光成像以及自然光图像5种口腔图像着手,解析目前人工智能在口腔癌和OPMD检测诊断中的研究进展和存在的困难。

关键词: 口腔癌, 口腔潜在恶性疾病, 人工智能

Abstract:

Oral cancer is a quite common global health issue, with morbidity and mortality progressively increased in recent years. Enhancing early diagnosis of oral cancer, especially in the phase of oral potentially malignant disorders (OPMD), would significantly reduce the incidence and mortality of oral cancer. However, earlier diagnosis of oral cancer and OPMD is still very challenging, and lacks of effective and efficient (traditional) medical methods. Artificial intelligence (AI) provides new insights and approaches for diagnosis of oral disease. Here we review the applications of AI to detect oral cancer and OPMD on a variety of photographic images, including histopathological images, confocal laser endomicroscopy, hyperspectral imaging, and white light images. And then, the obstacles for AI in diagnosis are also given.

Key words: oral cancer, oral potentially malignant disorders, artificial intelligence

中图分类号: 

  • R 782
1 周维, 何明艳, 沈婉莹, 等. 2005—2015年中国口腔癌发病及死亡趋势分析[J]. 华中科技大学学报(医学版), 2020, 49(6): 706-711.
Zhou W, He MY, Shen WY, et al. Analysis of the incidence and mortality trend of oral and pharyngeal cancer in China from 2005 to 2015[J]. Acta Med Univ Sci Technol Huazhong, 2020, 49(6): 706-711.
2 Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
3 Ghantous Y, Abu Elnaaj I. Global incidence and risk factors of oral cancer[J]. Harefuah, 2017, 156(10): 645-649.
4 Chaturvedi P. Effective strategies for oral cancer control in India[J]. J Cancer Res Ther, 2012, 8(): S55-S56.
5 Hashim D, Genden E, Posner M, et al. Head and neck cancer prevention: from primary prevention to impact of clinicians on reducing burden[J]. Ann Oncol, 2019, 30(5): 744-756.
6 Hassona Y, Scully C, Almangush A, et al. Oral potentially malignant disorders among dental patients: a pilot study in Jordan[J]. Asian Pac J Cancer Prev, 2014, 15(23): 10427-10431.
7 Singh MP, Misra S, Rathanaswamy SP, et al. Clinical profile and epidemiological factors of oral cancer patients from North India[J]. Natl J Maxillofac Surg, 2015, 6(1): 21-24.
8 Monteiro LS, Antunes L, Santos LL, et al. Survival probabilities and trends for lip, oral cavity and oropharynx cancers in Northern Portugal in the period 2000—2009[J]. Ecancermedicalscience, 2018, 12: 855.
9 Sungwalee W, Vatanasapt P, Suwanrungruang K, et al. Comparing survival of oral cancer patients before and after launching of the universal coverage scheme in Thailand[J]. Asian Pac J Cancer Prev, 2016, 17(7): 3541-3544.
10 Rusthoven KE, Raben D, Song JI, et al. Survival and patterns of relapse in patients with oral tongue cancer[J]. J Oral Maxillofac Surg, 2010, 68(3): 584-589.
11 Thomson PJ, Goodson ML, Smith DR. Profiling cancer risk in oral potentially malignant disorders-a patient cohort study[J]. J Oral Pathol Med, 2017, 46(10): 888-895.
12 Chakraborty D, Natarajan C, Mukherjee A. Advan-ces in oral cancer detection[J]. Adv Clin Chem, 2019, 91: 181-200.
13 Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology[J]. Ann Oncol, 2017, 28(6): 1191-1206.
14 Tschandl P, Codella N, Akay BN, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study[J]. Lancet Oncol, 2019, 20(7): 938-947.
15 Mobadersany P, Yousefi S, Amgad M, et al. Predic-ting cancer outcomes from histology and genomics using convolutional networks[J]. Proc Natl Acad Sci U S A, 2018, 115(13): E2970-E2979.
16 Rethman MP, Carpenter W, Cohen EE, et al. Evidence-based clinical recommendations regarding screening for oral squamous cell carcinomas[J]. J Am Dent Assoc, 2010, 141(5): 509-520.
17 Gupta RK, Kaur M, Manhas J. Tissue level based deep learning framework for early detection of dysplasia in oral squamous epithelium[J]. J Multimed Inf Syst, 2019, 6(2): 81-86.
18 Folmsbee J, Liu XL, Brandwein-Weber M, et al. Active deep learning: improved training efficiency of convolutional neural networks for tissue classification in oral cavity cancer[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, DC, USA: IEEE, 2018: 770-773.
19 Mehrotra R. The role of cytology in oral lesions: a review of recent improvements[J]. Diagn Cytopathol, 2012, 40(1): 73-83.
20 Brickley MR, Cowpe JG, Shepherd JP. Performance of a computer simulated neural network trained to categorise normal, premalignant and malignant oral smears[J]. J Oral Pathol Med, 1996, 25(8): 424-428.
21 Chatterjee S, Nawn D, Mandal M, et al. Augmentation of statistical features in cytopathology towards computer aided diagnosis of oral precanceral cancer[C]//Fourth International Conference on Biosignals, Images and Instrumentation (ICBSII). Chennai, India: IEEE, 2018: 206-212.
22 Dey S, Sarkar R, Chatterjee K, et al. Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis[J]. Tissue Cell, 2017, 49(2 Pt B): 296-306.
23 Shaban M, Khurram SA, Fraz MM, et al. A novel digital score for abundance of tumour infiltrating lymphocytes predicts disease free survival in oral squamous cell carcinoma[J]. Sci Rep, 2019, 9(1): 13341.
24 Gómez I, Warnakulasuriya S, Varela-Centelles PI, et al. Is early diagnosis of oral cancer a feasible objective? Who is to blame for diagnostic delay[J]. Oral Dis, 2010, 16(4): 333-342.
25 Prabhakar SK, Rajaguru H. Performance analysis of linear layer neural networks for oral cancer classification[C]//ICT International Student Project Confe-rence (ICT-ISPC). Johor, Malaysia: IEEE, 2017: 1-4.
26 Das N, Hussain E, Mahanta LB. Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network[J]. Neural Netw, 2020, 128: 47-60.
27 Das DK, Bose S, Maiti AK, et al. Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis[J]. Tissue Cell, 2018, 53: 111-119.
28 Oetter N, Knipfer C, Rohde M, et al. Development and validation of a classification and scoring system for the diagnosis of oral squamous cell carcinomas through confocal laser endomicroscopy[J]. J Transl Med, 2016, 14(1): 159.
29 Sethi S, Ju XQ, Logan RM, et al. Diagnostic accuracy of confocal laser endomicroscopy for the diagnosis of oral squamous cell carcinoma: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2021, 18(23): 12390.
30 Moore C, Mehta V, Ma XH, et al. Interobserver agreement of confocal laser endomicroscopy for detection of head and neck neoplasia[J]. Laryngoscope, 2016, 126(3): 632-637.
31 Aubreville M, Goncalves M, Knipfer C, et al. Patch-based carcinoma detection on confocal laser endomicroscopy images: a cross-site robustness assessment[EB/OL]. 2017:arXiv:1707.08149[cs.CV]. .
32 Aubreville M, Knipfer C, Oetter N, et al. Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep lear-ning[J]. Sci Rep, 2017, 7(1): 11979.
33 Dittberner A, Rodner E, Ortmann W, et al. Automa-ted analysis of confocal laser endomicroscopy ima-ges to detect head and neck cancer[J]. Head Neck, 2016, 38(): E1419-E1426.
34 Stoeve M, Aubreville M, Oetter N, et al. Motion artifact detection in confocal laser endomicroscopy images//Bildverarbeitung für die Medizin 2018[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018: 328-333.
35 Aubreville M, Stoeve M, Oetter N, et al. Deep lear-ning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images[J]. Int J Comput Assist Radiol Surg, 2019, 14(1): 31-42.
36 Halicek M, Little JV, Wang X, et al. Optical biopsy of head and neck cancer using hyperspectral ima-ging and convolutional neural networks[J]. J Biomed Opt, 2019, 24(3): 1-9.
37 Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm[J]. J Cancer Res Clin Oncol, 2019, 145(4): 829-837.
38 Halicek M, Little JV, Wang X, et al. Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks[J]. Proc SPIE Int Soc Opt Eng, 2018, 10576: 1057-605.
39 Lu GL, Wang DS, Qin XL, et al. Detection and delineation of squamous neoplasia with hyperspectral imaging in a mouse model of tongue carcinogenesis[J]. J Biophotonics, 2018, 11(3):10.1002/jbio.2017-00078.
40 Fei BW, Lu GL, Wang X, et al. Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients[J]. J Biomed Opt, 2017, 22(8): 1-7.
41 Awan KH, Morgan PR, Warnakulasuriya S. Evaluation of an autofluorescence based imaging system (VELscopeTM) in the detection of oral potentially malignant disorders and benign keratoses[J]. Oral Oncol, 2011, 47(4): 274-277.
42 Huang TT, Huang JS, Wang YY, et al. Novel quantitative analysis of autofluorescence images for oral cancer screening[J]. Oral Oncol, 2017, 68: 20-26.
43 Huang TT, Chen KC, Wong TY, et al. Two-channel autofluorescence analysis for oral cancer[J]. J Bio-med Opt, 2018, 24(5): 1-10.
44 Jeng MJ, Sharma M, Chao TY, et al. Multiclass classification of autofluorescence images of oral cavity lesions based on quantitative analysis[J]. PLoS One, 2020, 15(2): e0228132.
45 Uthoff RD, Song BF, Birur P, et al. Development of a dual-modality, dual-view smartphone-based ima-ging system for oral cancer detection[C]//Proc SPIE 10486, San Francisco, California, USA, SPIE BiOS, 2018, 10486: 106-112.
46 Song BF, Sunny S, Uthoff RD, et al. Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep lear-ning[J]. Biomed Opt Express, 2018, 9(11): 5318-5329.
47 Song BF, Li SB, Sunny S, et al. Classification of imbalanced oral cancer image data from high-risk po-pulation[J]. J Biomed Opt, 2021, 26(10): 105001.
48 Fu QY, Chen Y, Li ZH, et al. A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: a retrospective study[J]. EClinicalMedicine, 2020, 27: 100558.
49 Warin K, Limprasert W, Suebnukarn S, et al. Automatic classification and detection of oral cancer in photographic images using deep learning algorithms[J]. J Oral Pathol Med, 2021, 50(9): 911-918.
50 Jubair F, Al-Karadsheh O, Malamos D, et al. A no-vel lightweight deep convolutional neural network for early detection of oral cancer[J]. Oral Dis, 2022, 28(4): 1123-1130.
51 Song B, Li S, Sunny S, et al. An ensemble deep neural network approach for oral cancer screening[J]. Int J Onl Eng, 2021, 17(2): 121.
52 Welikala RA, Remagnino P, Lim JH, et al. Automa-ted detection and classification of oral lesions using deep learning for early detection of oral cancer[J]. IEEE Access, 8: 132677-132693.
53 Lim JH, Tan CS, Chan CS, et al. D’OraCa: deep learning-based classification of oral lesions with mouth landmark guidance for early detection of oral cancer[M]//Medical image understanding and analysis. Cham: Springer International Publishing, 2021: 408-422.
54 Guo C, Pleiss G, Sun Y, et al. On calibration of mo-dern neural networks[EB/OL]. 2017: arXiv: 1706. 04599[cs.LG]. .
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 姜玥莹,何宇添,李婷,周蓉卉. 近红外荧光探针在口腔癌诊断中应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 407-413.
[3] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[4] 朱可石,廖安琪,余优成. 机器学习在口腔种植学中的应用研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 491-498.
[5] 唐粤亭,代佳琪,董雯萱,王虎,郭际香,游梦. 基于机器学习的牙龄评测研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 146-151.
[6] 王太萍,石兴莲,李喆臻,刘梅,姜健红. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209.
[7] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[8] 罗恩. 人工智能正颌外科的探索与临床初步应用[J]. 国际口腔医学杂志, 2022, 49(2): 125-131.
[9] 田而慷,向倩蓉,赵欣然,彭佳涵,舒睿. 口腔诊疗中人工智能的运用[J]. 国际口腔医学杂志, 2021, 48(4): 475-484.
[10] 彭姝媛,向学熔,陈方淳,孙艳,尹凤,李敏. 口腔潜在恶性疾病生存质量量表中文版的信度和效度评价[J]. 国际口腔医学杂志, 2020, 47(5): 557-562.
[11] 黄璐,戴杰,吴燕岷. 唾液生物标志物在口腔癌筛查中的应用[J]. 国际口腔医学杂志, 2020, 47(1): 68-75.
[12] 原振英,管翠强,南欣荣. DNA甲基化与口腔疾病的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 437-441.
[13] 李倩,张平,陈娇,曾昕,冯云. 唾液组学在口腔癌诊断中的应用[J]. 国际口腔医学杂志, 2018, 45(6): 710-715.
[14] 韩曈曈,陈乔尔,朱友明. p53相关长链非编码RNA及其与口腔癌的关系[J]. 国际口腔医学杂志, 2018, 45(5): 597-602.
[15] 屈茜1 房付春1 吴补领1,2. 长链非编码RNA在牙周炎和口腔肿瘤疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(1): 62-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .