国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (2): 146-151.doi: 10.7518/gjkq.2023033

• 人工智能专栏 • 上一篇    下一篇

基于机器学习的牙龄评测研究进展

唐粤亭1(),代佳琪2,董雯萱3,王虎1,郭际香3,游梦1()   

  1. 1.口腔疾病研究国家重点实验室;国家口腔疾病临床医学研究中心;四川大学华西口腔医院医学影像科 成都 610041
    2.四川口腔医院放射科 成都 610015
    3.四川大学计算机学院 成都 610065
  • 收稿日期:2022-07-29 修回日期:2022-11-10 出版日期:2023-03-01 发布日期:2023-03-14
  • 通讯作者: 游梦
  • 作者简介:唐粤亭,医师,硕士,Email:497315852@qq.com
  • 基金资助:
    四川大学华西口腔医院探索与研发项目(LCYJ2019-9)

Research progress of dental age evaluation based on machine learning methods

Tang Yueting1(),Dai Jiaqi2,Dong Wenxuan3,Wang Hu1,Guo Jixiang3,You Meng1()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Medical Imaging, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.Dept. of Oral Radiology, Sichuan Hospital of Stomatology, Chengdu 610015, China
    3.College of Computer Science, Sichuan University, Chengdu 610065, China
  • Received:2022-07-29 Revised:2022-11-10 Online:2023-03-01 Published:2023-03-14
  • Contact: Meng You
  • Supported by:
    Exploration and Research and Development Project of West China Hospital of Stomatology, Sichuan University(LCYJ2019-9)

摘要:

牙龄是生物学年龄的一项重要指标,在口腔正畸学、牙科法医学、刑侦学等方面有重要的应用价值。牙龄评测的传统方法包括图谱法、计分法、牙髓腔增龄性评测法等,这些人工评测方法较为烦琐而影响其推广应用。随着人工智能和机器学习相关技术的发展,近年来出现了牙龄的智能评测相关研究,并在算法准确性等方面取得了一定的进展。本文对牙龄评测的传统方法和机器学习方法进行总结,归纳了在探索及实践过程中传统方法与现代方法的优势和不足, 旨在为牙龄评测的后续研究和应用提供参考。

关键词: 牙龄, 牙龄评测, 机器学习, 人工智能

Abstract:

Dental age is an important indicator of biological age and has essential application value in orthodontics, forensic dentistry, and criminal investigation. Traditional methods of dental age evaluation include atlas, scoring, and pulp cavity evaluation. These manual evaluation methods are relative cumbersome that their applications have been hampered. With the development of artificial intelligence technology and machine learning algorithms, intelligent evaluation of dental age have been gained more attention in recent years. This paper aims to provide a reference for the future research and application of dental age evaluation, summarize traditional and machine learning methods, and demonstrate the benefits and limitations of the existing approaches that are used in this topic.

Key words: dental age, dental age assessment, machine learning, artificial intelligence

中图分类号: 

  • R 780
1 Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(6): 667-674.
2 Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults[J]. Proc Natl Acad Sci U S A, 2015, 112(30): E4104-E4110.
3 Rockwood K, Howlett SE. Fifteen years of progress in understanding frailty and health in aging[J]. BMC Med, 2018, 16: 220.
4 Klemera P, Doubal S. A new approach to the concept and computation of biological age[J]. Mech Ageing Dev, 2006, 127(3): 240-248.
5 Ingram DK. Toward the behavioral assessment of biological aging in the laboratory mouse: concepts, terminology, and objectives[J]. Exp Aging Res, 1983, 9(4): 225-238.
6 Frucht S, Schnegelsberg C, Schulte-Mönting J, et al. Dental age in southwest Germany. A radiographic study[J]. J Orofac Orthop, 2000, 61(5): 318-329.
7 谭英, 王璟, 巴凯, 等. 成都地区青少年第三磨牙牙龄与年龄的相关性研究[J]. 华西口腔医学杂志, 2013, 31(3): 272-274, 278.
Tan Y, Wang J, Ba K, et al. Relationship between dental calcification stages of the third molar and a-ges among teenagers in Chengdu[J]. West China J Stomatol, 2013, 31(3): 272-274, 278.
8 Lopez TT, Arruda CP, Rocha M, et al. Estimating ages by third molars: stages of development in Brazilian young adults[J]. J Forensic Leg Med, 2013, 20(5): 412-418.
9 Melo M, Ata-Ali J. Accuracy of the estimation of dental age in comparison with chronological age in a Spanish sample of 2 641 living subjects using the Demirjian and Nolla methods[J]. Forensic Sci Int, 2017, 270: 276.e1-276.e7.
10 Schour I, Massler M. Studies in tooth development: the growth pattern of human teeth[J]. J Am Dent Assoc, 1940, 27(11): 1778-1793.
11 Schour I, Massler M. Studies in tooth development: the growth pattern of human teeth part Ⅱ[J]. J Am Dent Assoc, 1940, 27(12): 1918-1931.
12 Moorrees CF, Fanning EA, Hunt EE Jr. Age variation of formation stages for ten permanent teeth[J]. J Dent Res, 1963, 42: 1490-1502.
13 Anderson DL, Thompson GW, Popovich F. Age of attainment of mineralization stages of the permanent dentition[J]. J Forensic Sci, 1976, 21(1): 191-200.
14 Demirjian A, Goldstein H, Tanner JM. A new system of dental age assessment[J]. Hum Biol, 1973, 45(2): 211-227.
15 Willems G. A review of the most commonly used dental age estimation techniques[J]. J Forensic O-dontostomatol, 2001, 19(1): 9-17.
16 Roberts GJ, Parekh S, Petrie A, et al. Dental age assessment (DAA): a simple method for children and emerging adults[J]. Br Dent J, 2008, 204(4): E7.
17 Jayaraman J, Wong HM, King NM, et al. Development of a reference data set (RDS) for dental age estimation (DAE) and testing of this with a separate validation set (VS) in a southern Chinese population[J]. J Forensic Leg Med, 2016, 43: 26-33.
18 Wong HM, Wen YF, Jayaraman J, et al. Northern Chinese dental ages estimated from southern Chinese reference datasets closely correlate with chronological age[J]. Heliyon, 2016, 2(12): e00216.
19 Moze K, Roberts G. Dental age assessment (DAA) of Afro-Trinidadian children and adolescents. Deve-lopment of a reference dataset (RDS) and comparison with Caucasians resident in London, UK[J]. J Forensic Leg Med, 2012, 19(5): 272-279.
20 Cameriere R, Flores-Mir C, Mauricio F, et al. Effects of nutrition on timing of mineralization in teeth in a Peruvian sample by the Cameriere and Demirjian methods[J]. Ann Hum Biol, 2007, 34(5): 547-556.
21 Melo M, Ata-Ali F, Ata-Ali J, et al. Demirjian and Cameriere methods for age estimation in a Spanish sample of 1 386 living subjects[J]. Sci Rep, 2022, 12: 2838.
22 Gleiser I, Hunt EE Jr. The permanent mandibular first molar: its calcification, eruption and decay[J]. Am J Phys Anthropol, 1955, 13(2): 253-283.
23 Hunt EE Jr, Gleiser I. The estimation of age and sex of preadolescent children from bones and teeth[J]. Am J Phys Anthropol, 1955, 13(3): 479-487.
24 Mesotten K, Gunst K, Carbonez A, et al. Dental age estimation and third molars: a preliminary study[J]. Forensic Sci Int, 2002, 129(2): 110-115.
25 Olze A, Bilang D, Schmidt S, et al. Validation of common classification systems for assessing the mineralization of third molars[J]. Int J Legal Med, 2005, 119(1): 22-26.
26 Thevissen PW, Fieuws S, Willems G. Third molar development: measurements versus scores as age predictor[J]. Arch Oral Biol, 2011, 56(10): 1035-1040.
27 Thevissen PW, Kaur J, Willems G. Human age estimation combining third molar and skeletal development[J]. Int J Legal Med, 2012, 126(2): 285-292.
28 Kvaal SI, Kolltveit KM, Thomsen IO, et al. Age estimation of adults from dental radiographs[J]. Forensic Sci Int, 1995, 74(3): 175-185.
29 Vandevoort FM, Bergmans L, van Cleynenbreugel J, et al. Age calculation using X-ray microfocus computed tomographical scanning of teeth: a pilot study[J]. J Forensic Sci, 2004, 49(4): 787-790.
30 Yang F, Jacobs R, Willems G. Dental age estimation through volume matching of teeth imaged by cone-beam CT[J]. Forensic Sci Int, 2006, 159(): S78-S83.
31 Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1-A4.
32 Halabi SS, Prevedello LM, Kalpathy-Cramer J, et al. The RSNA pediatric bone age machine learning challenge[J]. Radiology, 2019, 290(2): 498-503.
33 Beheshtian E, Putman K, Santomartino SM, et al. Generalizability and bias in a deep learning pedia-tric bone age prediction model using hand radiographs[J]. Radiology, 2022: 220505.
34 Back WD, Seurig S, Wagner S, et al. Forensic age estimation with Bayesian convolutional neural networks based on panoramic dental X-ray imaging[C]//International Conference on Medical Imaging with Deep Learning (MIDL). Elsevier, 2019.
35 Mualla N, Houssein EH, Hassan MR. Dental age estimation based on X-ray images[J]. Comput Mater Continua, 2020, 62(2): 591-605.
36 Kim S, Lee YH, Noh YK, et al. Age-group determination of living individuals using first molar images based on artificial intelligence[J]. Sci Rep, 2021, 11(1): 1073.
37 Oktay AB. Tooth detection with convolutional neural networks[C]//2017 Medical Technologies National Congress (TIPTEKNO). IEEE, 2017: 1-4.
38 Miki Y, Muramatsu C, Hayashi T, et al. Classification of teeth in cone-beam CT using deep convolutional neural network[J]. Comput Biol Med, 2017, 80: 24-29.
39 Tuzoff DV, Tuzova LN, Bornstein MM, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofac Radiol, 2019, 48(4): 20180051.
40 Kim C, Kim D, Jeong H, et al. Automatic tooth detection and numbering using a combination of a CNN and heuristic algorithm[J]. Appl Sci, 2020, 10(16): 5624.
41 Mohammad N, Muad AM, Ahmad R, et al. Reclassification of Demirjian’s mandibular premolars sta-ging for age estimation based on semi-automated segmentation of deep convolutional neural network[J]. Forensic Imaging, 2021, 24: 200440.
42 Čular L, Tomaić M, Subašić M, et al. Dental age estimation from panoramic X-ray images using statistical models[C]//Proceedings of the 10th internatio-nal symposium on image and signal processing and analysis. IEEE, 2017: 25-30.
43 De Tobel J, Radesh P, Vandermeulen D, et al. An automated technique to stage lower third molar deve-lopment on panoramic radiographs for age estimation: a pilot study[J]. J Forensic Odontostomatol, 2017, 35(2): 42-54.
44 Merdietio Boedi R, Banar N, De Tobel J, et al. Effect of lower third molar segmentations on automa-ted tooth development staging using a convolutional neural network[J]. J Forensic Sci, 2020, 65(2): 481-486.
45 Banar N, Bertels J, Laurent F, et al. Towards fully automated third molar development staging in pa-noramic radiographs[J]. Int J Legal Med, 2020, 134(5): 1831-1841.
46 Han MQ, Du SY, Ge YY, et al. With or without human interference for precise age estimation based on machine learning[J]. Int J Legal Med, 2022, 136(3): 821-831.
47 Štepanovský M, Ibrová A, Buk Z, et al. Novel age estimation model based on development of permanent teeth compared with classical approach and other modern data mining methods[J]. Forensic Sci Int, 2017, 279: 72-82.
48 Tao J, Wang J, Wang A, et al. Dental age estimation: a machine learning perspective[C]//International Conference on Advanced Machine Learning Technologies and Applications. Springer, 2019: 722-733.
[1] 朱可石,廖安琪,余优成. 机器学习在口腔种植学中的应用研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 491-498.
[2] 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145.
[3] 罗恩. 人工智能正颌外科的探索与临床初步应用[J]. 国际口腔医学杂志, 2022, 49(2): 125-131.
[4] 田而慷,向倩蓉,赵欣然,彭佳涵,舒睿. 口腔诊疗中人工智能的运用[J]. 国际口腔医学杂志, 2021, 48(4): 475-484.
[5] 陈建伟, 刘泽萍, 郭婧, 刘人恺, 陈婷婷, 邹淑娟. Demirjian 法测定成都地区8~16 岁青少年牙龄[J]. 国际口腔医学杂志, 2009, 36(3): 273-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .