国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (4): 472-478.doi: 10.7518/gjkq.2023070

• 综述 • 上一篇    下一篇

微针在口腔医学中的应用

范琳(),孙江()   

  1. 大连市口腔医院牙周黏膜科 大连 116021
  • 收稿日期:2022-11-12 修回日期:2023-04-04 出版日期:2023-07-01 发布日期:2023-06-21
  • 通讯作者: 孙江
  • 作者简介:范琳,硕士,Email:656671406@qq.com

Application of microneedles in stomatology

Fan Lin(),Sun Jiang.()   

  1. Dept. of Periodontal Mucosa, Dalian Stomatological Hospital, Dalian 116021, China
  • Received:2022-11-12 Revised:2023-04-04 Online:2023-07-01 Published:2023-06-21
  • Contact: Jiang. Sun

摘要:

微针(MN)是一种经皮给药装置,可突破口腔黏膜屏障递送药物经口腔颌面部静脉进入体循环而发挥药效。此外,将微针作用于口腔黏膜后可刺激机体立即启动创面愈合级联反应,激发多种生长因子释放,促进血管新生及胶原蛋白、弹性蛋白合成以实现组织再生。大量研究表明微针具备安全、无痛、微创、高效给药等应用特点。目前微针在药学领域和皮肤科领域已得到广泛应用,本文就微针在口腔医学中的应用进行综述。

关键词: 微针, 口腔黏膜给药, 经皮胶原诱导治疗, 口腔局部麻醉, 口腔癌, 牙周组织再生

Abstract:

Microneedles (MN) are transdermal drug delivery devices that can break through the oral mucosal barrier to deliver drugs into the body circulation through the oral and maxillofacial veins to exert drug effects. In addition, microneedles, when applied to the oral mucosa, can stimulate the body to immediately initiate a wound healing cascade response, stimulate the release of a variety of growth factors, promote vascular renewal and collagen and elastin synthesis to achieve tissue regeneration. Numerous studies have shown that microneedling is safe, painless, minimally invasive, and highly effective in drug delivery. At present, microneedling has been widely used in the fields of pharmacy and dermatology, and this paper reviews the application of microneedling in dentistry.

Key words: microneedle, oral mucosal administration, percutaneous collagen induction therapy, oral local anesthesia, oral cancer, periodontal tissue regeneration

中图分类号: 

  • R 782

图 1

MN的类型及其给药机制"

1 Lim DJ, Vines JB, Park H, et al. Microneedles: a versatile strategy for transdermal delivery of biological molecules[J]. Int J Biol Macromol, 2018, 110: 30-38.
2 Hegde NR, Kaveri SV, Bayry J. Recent advances in the administration of vaccines for infectious disea-ses: microneedles as painless delivery devices for mass vaccination[J]. Drug Discov Today, 2011, 16(23/24): 1061-1068.
3 Henry S, McAllister DV, Allen MG, et al. Microfa-bricated microneedles: a novel approach to transdermal drug delivery[J]. J Pharm Sci, 1999, 88(9): 948.
4 Hearnden V, Sankar V, Hull K, et al. New developments and opportunities in oral mucosal drug deli-very for local and systemic disease[J]. Adv Drug Deliv Rev, 2012, 64(1): 16-28.
5 刘芳媛, 赵锋, 马银玲, 等. 微针在口腔黏膜给药系统中的研究进展[J]. 中国医院药学杂志, 2021(21): 2264-2269.
Liu FY, Zhao F, Ma YL, et al. Research advances of microneedles in oral mucosal drug delivery system[J]. Chin J Hosp Pharm, 2021(21): 2264-2269.
6 Creighton RL, Woodrow KA. Microneedle-media-ted vaccine delivery to the oral mucosa[J]. Adv Healthc Mater, 2019, 8(4): e1801180.
7 Ma YZ, Tao WQ, Krebs SJ, et al. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity[J]. Pharm Res, 2014, 31(9): 2393-2403.
8 Oh YJ, Cha HR, Hwang SJ, et al. Ovalbumin and cholera toxin delivery to buccal mucus for immunization using microneedles and comparison of immunological response to transmucosal delivery[J]. Drug Deliv Transl Res, 2021, 11(4): 1390-1400.
9 Daly S, Claydon NCA, Newcombe RG, et al. Randomised controlled trial of a microneedle patch with a topical anaesthetic for relieving the pain of dental injections[J]. J Dent, 2021, 107: 103617.
10 Corrêa MEAB, Dos Santos Haupenthal DP, Mendes C, et al. Effects of percutaneous collagen induction therapy associated with hyaluronic acid on inflammatory response, oxidative stress, and collagen production[J]. Inflammation, 2020, 43(6): 2232-2244.
11 Hou A, Cohen B, Haimovic A, et al. Microneedling: a comprehensive review[J]. Dermatol Surg, 2017, 43(3): 321-339.
12 McCrudden MT, McAlister E, Courtenay AJ, et al. Microneedle applications in improving skin appea-rance[J]. Exp Dermatol, 2015, 24(8): 561-566.
13 Aust MC, Fernandes D, Kolokythas P, et al. Percutaneous collagen induction therapy: an alternative treatment for scars, wrinkles, and skin laxity[J]. Plast Reconstr Surg, 2008, 121(4): 1421-1429.
14 El-Domyati M, Barakat M, Awad S, et al. Multiple microneedling sessions for minimally invasive facial rejuvenation: an objective assessment[J]. Int J Dermatol, 2015, 54(12): 1361-1369.
15 Samizadeh S, Belhaouari L. Effectiveness of growth factor-induced therapy for skin rejuvenation: a case series[J]. J Cosmet Dermatol, 2021, 20(6): 1867-1874.
16 Yang H, Kang G, Jang M, et al. Development of lidocaine-loaded dissolving microneedle for rapid and efficient local anesthesia[J]. Pharmaceutics, 2020, 12(11): 1067.
17 Economidou SN, Pere CPP, Reid A, et al. 3D prin-ted microneedle patches using stereolithography (SLA) for intradermal insulin delivery[J]. Mater Sci Eng C Mater Biol Appl, 2019, 102: 743-755.
18 Casabona G, Alfertshofer MG, Kaye KO, et al. Safety and efficacy of microneedling technology in the treatment of acne scars[J]. J Cosmet Dermatol, 2021, 20(11): 3482-3491.
19 Narayanan SP, Raghavan S. Solid silicon microneedles for drug delivery applications[J]. Int J Adv Manuf Technol, 2017, 93(1): 407-422.
20 Amer A, Elhariry S, Al-Balat W. Combined autologous platelet-rich plasma with microneedling versus microneedling with non-cross-linked hyaluronic a-cid in the treatment of atrophic acne scars: split-face study[J]. Dermatol Ther, 2021, 34(1): e14457.
21 Kang C, Lu DK. Combined effect of microneedling and platelet-rich plasma for the treatment of acne scars: a meta-analysis[J]. Front Med (Lausanne), 2022, 8: 788754.
22 Lutton RE, Moore J, Larrañeta E, et al. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialization[J]. Drug Deliv Transl Res, 2015, 5(4): 313-331.
23 Norman JJ, Brown MR, Raviele NA, et al. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes[J]. Pediatr Diabetes, 2013, 14(6): 459-465.
24 Mishra R, Maiti TK, Bhattacharyya TK. Feasibility studies on nafion membrane actuated micropump integrated with hollow microneedles for insulin deli-very device[J]. J Microelectromechanical Syst, 2019, 28(6): 987-996.
25 Martanto W, Moore JS, Kashlan O, et al. Microinfusion using hollow microneedles[J]. Pharm Res, 2006, 23(1): 104-113.
26 Kapoor Y, Milewski M, Dick L, et al. Coated microneedles for transdermal delivery of a potent pharmaceutical peptide[J]. Biomed Microdevices, 2019, 22(1): 7.
27 Xu J, Xu DF, Xuan X, et al. Advances of microneedles in biomedical applications[J]. Molecules, 2021, 26(19): 5912.
28 Shakya AK, Ingrole RSJ, Joshi G, et al. Microneedles coated with peanut allergen enable desensitization of peanut sensitized mice[J]. J Control Release, 2019, 314: 38-47.
29 Yu WJ, Jiang GH, Liu DP, et al. Fabrication of biodegradable composite microneedles based on cal-cium sulfate and gelatin for transdermal delivery of insulin[J]. Mater Sci Eng C Mater Biol Appl, 2017, 71: 725-734.
30 Tian Y, Lee J, van der Maaden K, et al. Intradermal administration of influenza vaccine with trehalose and pullulan-based dissolving microneedle arrays[J]. J Pharm Sci, 2022, 111(4): 1070-1080.
31 Wang SY, Zhu MM, Zhao L, et al. Insulin-loaded silk fibroin microneedles as sustained release system[J]. ACS Biomater Sci Eng, 2019, 5(4): 1887-1894.
32 Tong ZZ, Zhou JY, Zhong JX, et al. Glucose-and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats[J]. ACS Appl Mater Interfaces, 2018, 10(23): 20014-20024.
33 Donnelly RF, Singh TR, Garland MJ, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery[J]. Adv Funct Mater, 2012, 22(23): 4879-4890.
34 Turner JG, White LR, Estrela P, et al. Hydrogel-forming microneedles: current advancements and future trends[J]. Macromol Biosci, 2021, 21(2): e2000-307.
35 Jia XQ, Colombo G, Padera R, et al. Prolongation of sciatic nerve blockade by in situ cross-linked hya-luronic acid[J]. Biomaterials, 2004, 25(19): 4797-4804.
36 Duvillard C, Romanet P, Cosmidis A, et al. Phase 2 study of intratumoral cisplatin and epinephrine treatment for locally recurrent head and neck tumors[J]. Ann Otol Rhinol Laryngol, 2004, 113(3 Pt 1): 229-233.
37 Ma YZ, Boese SE, Luo Z, et al. Drug coated microneedles for minimally-invasive treatment of oral carcinomas: development and in vitro evaluation[J]. Biomed Microdevices, 2015, 17(2): 44.
38 Liu Y, Cheng MS, Zhao JQ, et al. Transdermal deli-very of lidocaine-loaded elastic nano-liposomes with microneedle array pretreatment[J]. Biomedicines, 2021, 9(6): 592.
39 Kaufmann ME, Lenherr P, Walter C, et al. Systemically administered amoxicillin/metronidazole versus azithromycin as adjuncts to subgingival instrumentation during non-surgical periodontal therapy. A systematic review[J]. Swiss Dent J, 2020, 130(7/8): 572-583.
40 Arshad MS, Zahra AT, Zafar S, et al. Antibiofilm effects of macrolide loaded microneedle patches: prospects in healing infected wounds[J]. Pharm Res, 2021, 38(1): 165-177.
41 Chi JJ, Sun LY, Cai LJ, et al. Chinese herb microneedle patch for wound healing[J]. Bioact Mater, 2021, 6(10): 3507-3514.
42 Abraham S, Deepak KT, Ambili R, et al. Gingival biotype and its clinical significance-a review[J]. Saudi J Dent Res, 2014, 5(1): 3-7.
43 顾冰霞, 孙江. 牙龈生物型对口腔治疗预后影响的研究进展[J]. 中华口腔医学杂志, 2020, 55(7): 504-508.
Gu BX, Sun J. Research progress of the influence of gingival biotype on the prognosis of oral treatment[J]. Chin J Stomatol, 2020, 55(7): 504-508.
44 Gonçalves Motta SH, Ferreira Camacho MP, Quintela DC, et al. Relationship between clinical and histologic periodontal biotypes in humans[J]. Int J Pe-riodontics Restorative Dent, 2017, 37(5): 737-741.
45 Ozsagir ZB, Saglam E, Yilmaz BS, et al. Injectable platelet-rich fibrin and microneedling for gingival augmentation in thin periodontal phenotype: a randomized controlled clinical trial[J]. J Clin Periodontol, 2020, 47(4): 489-499.
46 Zhang XX, Hasani-Sadrabadi MM, Zarubova J, et al. Immunomodulatory microneedle patch for perio-dontal tissue regeneration[J]. Matter, 2022, 5(2): 666-682.
47 Natah SS, Konttinen YT, Enattah NS, et al. Recurrent aphthous ulcers today: a review of the growing knowledge[J]. Int J Oral Maxillofac Surg, 2004, 33(3): 221-234.
48 Yin ZR, Zhang XL, Bai Y, et al. Dissolvable and la-yered microneedles composed of hyaluronate/rbFGF/CPC effectively improve the treatment effect on recurrent aphthous ulcers[J]. New J Chem, 2022, 46(15): 7279-7289.
49 Di Carla Santos S, Fávaro-Moreira NC, Abdalla HB, et al. A crossover clinical study to evaluate pain intensity from microneedle insertion in different parts of the oral cavity[J]. Int J Pharm, 2021, 592: 120050.
50 李伟泽, 张寒, 韩文霞, 等. 实体微针透皮给药的安全性研究[J]. 中国药学杂志, 2011(23): 1818-1822.
Li WZ, Zhang H, Han WX, et al. Study on the safety of solid microneedles for transdermal drug deli-very[J]. Chin Pharm J, 2011(23): 1818-1822.
51 Chu S, Foulad DP, Mesinkovska NA. Safety profile for microneedling: a systematic review[J]. Dermatol Surg, 2021, 47(9): 1249-1254.
52 Gowda A, Healey B, Ezaldein H, et al. A systematic review examining the potential adverse effects of microneedling[J]. J Clin Aesthet Dermatol, 2021, 14(1): 45-54.
53 钟芮娜, 申宝德, 沈成英, 等. 生物大分子药物口腔黏膜递送研究进展[J]. 中国新药杂志, 2018(17): 2011-2016.
Zhong RN, Shen BD, Shen CY, et al. Research pro-gress of the oral mucosal delivery of biomacromolecules[J]. Chin J New Drugs, 2018(17): 2011-2016.
54 Batra P, Dawar A, Miglani S. Microneedles and nanopatches-based delivery devices in dentistry[J]. Discoveries (Craiova), 2020, 8(3): e116.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 姜玥莹,何宇添,李婷,周蓉卉. 近红外荧光探针在口腔癌诊断中应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 407-413.
[3] 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145.
[4] 王太萍,石兴莲,李喆臻,刘梅,姜健红. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209.
[5] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[6] 黄璐,戴杰,吴燕岷. 唾液生物标志物在口腔癌筛查中的应用[J]. 国际口腔医学杂志, 2020, 47(1): 68-75.
[7] 原振英,管翠强,南欣荣. DNA甲基化与口腔疾病的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 437-441.
[8] 贾婷婷,颜世果. 特异性AT序列结合蛋白2在颌面部发育及牙周组织再生中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 320-325.
[9] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
[10] 李倩,张平,陈娇,曾昕,冯云. 唾液组学在口腔癌诊断中的应用[J]. 国际口腔医学杂志, 2018, 45(6): 710-715.
[11] 韩曈曈,陈乔尔,朱友明. p53相关长链非编码RNA及其与口腔癌的关系[J]. 国际口腔医学杂志, 2018, 45(5): 597-602.
[12] 姜雨汐, 刘树泰. 牙周韧带细胞膜片技术用于牙周组织再生的研究进展[J]. 国际口腔医学杂志, 2017, 44(2): 204-208.
[13] 屈茜1 房付春1 吴补领1,2. 长链非编码RNA在牙周炎和口腔肿瘤疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(1): 62-.
[14] 邵小钧 席庆. 食用槟榔及其与口腔癌间的关系[J]. 国际口腔医学杂志, 2015, 42(6): 668-672.
[15] 李昕怡,董伟. 釉基质蛋白促进牙周组织再生的研究进展[J]. 国际口腔医学杂志, 2015, 42(5): 600-605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .