国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (4): 407-413.doi: 10.7518/gjkq.2023068

• 口腔肿瘤学专栏 • 上一篇    下一篇

近红外荧光探针在口腔癌诊断中应用的研究进展

姜玥莹(),何宇添,李婷,周蓉卉()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院口腔颌面外科 成都 610041
  • 收稿日期:2022-11-11 修回日期:2023-02-02 出版日期:2023-07-01 发布日期:2023-06-21
  • 通讯作者: 周蓉卉
  • 作者简介:姜玥莹,博士,Email:jyyabby@126.com
  • 基金资助:
    国家自然科学基金青年基金(82102694)

Research progress on the application of near infrared fluorescence probe in the diagnosis of oral cancer

Jiang Yueying(),He Yutian,Li Ting,Zhou Ronghui.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-11-11 Revised:2023-02-02 Online:2023-07-01 Published:2023-06-21
  • Contact: Ronghui. Zhou
  • Supported by:
    the National Science Fund for Distinguished Young Scholars(82102694)

摘要:

荧光成像因具有侵入性低、灵敏度高、可实时检测等优点,在癌症诊断及药物靶向等研究领域备受关注。自体荧光检查术可利用病变组织与正常组织对同一波长激发光产生的荧光差异对癌变组织进行诊断,或是利用药物本身的荧光对癌变组织进行示踪。然而,上述荧光诊断技术的特异性较差且检测灵敏度相对较低。与现有荧光诊断方法相比,近红外荧光诊断技术受背景信号干扰小且能对更深部组织进行成像,可有效弥补自体荧光检查术的不足,对辅助临床上口腔癌症的诊断具有重要意义。基于此,本文综述了应用于口腔癌诊断领域的第一、二近红外荧光窗口成像探针的构建方法,并进一步讨论了其在标记口腔癌症中的研究进展,为实现口腔癌实时精准诊断研究提供参考。

关键词: 口腔癌, 近红外荧光, 诊断, 纳米探针, 分子探针

Abstract:

Fluorescence imaging has attracted much attention in cancer diagnosis and drug targeting due to its advantages of low invasion, high sensitivity and real-time detection. Autofluorescence can be used to diagnose cancerous tissue by the difference of fluorescence generated by the same wavelength excitation light between pathological tissue and normal tissue, or to trace cancerous tissue by the fluorescence of the drug itself. However, the specificity and sensitivity of these fluorescence diagnostic techniques are poor. Compared with the existing fluorescence diagnosis methods, near-infrared fluorescence diagnosis technology is less interfered by background signals and can image deeper tissues, which can effectively make up for the deficiency of autofluorescence examination, and has important significance for the clinical diagnosis of oral cancer. Based on this, this paper reviews the construction methods of the first and second near-infrared fluorescent window imaging probes applied in the field of oral cancer diagnosis, and further discusses its research progress in the labeling of oral cancer, providing a reference for the real-time and accurate diagnosis of oral cancer.

Key words: oral cancer, near-infrared fluorescence, diagnosis, nanoprobe, molecular probe

中图分类号: 

  • R 782
1 Vonk J, de Wit JG, Voskuil FJ, et al. Improving oral cavity cancer diagnosis and treatment with fluorescence molecular imaging[J]. Oral Dis, 2021, 27(1): 21-26.
2 Chakraborty D, Natarajan C, Mukherjee A. Advan-ces in oral cancer detection[J]. Adv Clin Chem, 2019, 91: 181-200.
3 Neville BW, Day TA. Oral cancer and precancerous lesions[J]. CA A Cancer J Clin, 2002, 52(4): 195-215.
4 Wu JX, Hanson M, Shaha AR. Sentinel node biopsy for cancer of the oral cavity[J]. J Surg Oncol, 2019, 120(2): 99-100.
5 Madhura MG, Rao RS, Patil S, et al. Advanced diagnostic aids for oral cancer[J]. Dis Mon, 2020, 66(12): 101034.
6 Shanti RM, Tanaka T, Stanton DC. Oral biopsy techniques[J]. Dermatol Clin, 2020, 38(4): 421-427.
7 Ilhan B, Lin K, Guneri P, et al. Improving oral cancer outcomes with imaging and artificial intelligence[J]. J Dent Res, 2020, 99(3): 241-248.
8 Keshavarzi M, Darijani M, Momeni F, et al. Mole-cular imaging and oral cancer diagnosis and therapy[J]. J Cell Biochem, 2017, 118(10): 3055-3060.
9 Ries J, Schwille P. Fluorescence correlation spectroscopy[J]. Bioessays, 2012, 34(5): 361-368.
10 Tatehara S, Satomura K. Non-invasive diagnostic system based on light for detecting early-stage oral cancer and high-risk precancerous lesions-potential for dentistry[J]. Cancers (Basel), 2020, 12(11): 3185.
11 Awan KH, Morgan PR, Warnakulasuriya S. Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses[J]. Oral Oncol, 2011, 47(4): 274-277.
12 Wang Q, Wang CY, Wang XD, et al. Construction of CPs@MnO2-AgNPs as a multifunctional nanosensor for glutathione sensing and cancer theranostics[J]. Nanoscale, 2019, 11(40): 18845-18853.
13 Xu Y, Chen X, Chai R, et al. A magnetic/fluorome-tric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection[J]. Nanoscale, 2016, 8(27): 13414-13421.
14 Du GF, Li CZ, Chen HZ, et al. Rose Bengal staining in detection of oral precancerous and malignant lesions with colorimetric evaluation: a pilot study[J]. Int J Cancer, 2007, 120(9): 1958-1963.
15 Ghanim M, Relitti N, McManus G, et al. A non-to-xic, reversibly released imaging probe for oral cancer that is derived from natural compounds[J]. Sci Rep, 2021, 11(1): 14069.
16 Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications[J]. Int J Nanomedicine, 2017, 12: 5421-5431.
17 Li CY, Chen GC, Zhang YJ, et al. Advanced fluorescence imaging technology in the near-infrared‑Ⅱwindow for biomedical applications[J]. J Am Chem Soc, 2020, 142(35): 14789-14804.
18 Sakudo A. Near-infrared spectroscopy for medical applications: current status and future perspectives[J]. Clin Chim Acta, 2016, 455: 181-188.
19 Ma ZR, Wang FF, Wang WZ, et al. Deep learning for in vivo near-infrared imaging[J]. Proc Natl Acad Sci U S A, 2021, 118(1): e2021446118.
20 Zhu SJ, Tian R, Antaris AL, et al. Near-infrared‑Ⅱ molecular dyes for cancer imaging and surgery[J]. Adv Mater, 2019, 31(24): e1900321.
21 Zhu SJ, Yung BC, Chandra S, et al. Near-infrared‑Ⅱ (NIR‑Ⅱ ) bioimaging via off-peak NIR‑Ⅰ fluorescen-ce emission[J]. Theranostics, 2018, 8(15): 4141-4151.
22 Wang YX, Xie DY, Pan JR, et al. A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry the-rapy against oral squamous cell cancer[J]. Biomater Sci, 2019, 7(12): 5270-5282.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 刘洋,尹德强. 关于颌位调整方法的思考和改进[J]. 国际口腔医学杂志, 2023, 50(5): 499-505.
[3] 李奕君, 徐子昂, 李一. 前哨淋巴结在头颈部鳞状细胞癌检测的应用进展[J]. 国际口腔医学杂志, 2023, 50(5): 521-527.
[4] 戢晓,张岚,黄定明. 牙源性与非牙源性上颌窦炎鉴别诊断及其治疗方案的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 566-572.
[5] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[6] 夏溦瑶,罗岩坤,贾仲林. Pierre Robin序列征的精准诊断和遗传病因学研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 287-292.
[7] 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145.
[8] 王太萍,石兴莲,李喆臻,刘梅,姜健红. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209.
[9] 秦艺纯,谭学莲,黄定明. 腺牙源性囊肿的临床研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 100-107.
[10] 李婷,杨学财,王俊伟. 儿童口腔颅颌面罕见畸形Williams-Beuren综合征的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 108-113.
[11] 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730.
[12] 朱星蓉,廖岚. 外胚叶发育不良综合征口腔临床诊疗的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 737-742.
[13] 曾杨林,谭学莲,宋东哲,黄定明. 牙根内吸收临床诊治方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 561-568.
[14] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[15] 叶泽林,刘璐,龙虎,游梦. 弯曲前牙的影像评价及治疗的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 173-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .