国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (4): 401-406.doi: 10.7518/gjkq.2023075
摘要:
根管治疗是目前治疗牙髓根尖周疾病最常用的治疗方法。根管治疗成功的关键之一在于有效的根管冲洗。酸性氧化电位水是一种由氯盐电解产生的,具有高氧化还原电位和低pH值,含一定浓度有效氯的液体,具有较强的氧化能力和快速灭菌作用。相较于临床上常用的根管冲洗剂次氯酸钠溶液,酸性氧化电位水对人体无毒,对皮肤黏膜无刺激,对根管玷污层具有一定的清除作用。这些优点使其受到了国内外学者的重视,有望作为一种较为理想的根管冲洗剂应用。本文就目前酸性氧化电位水的制备与保存,用作根管冲洗剂的性能特点、应用前景及存在的问题进行综述。
中图分类号:
1 | Guo YY, Zhu ZH, Zhao YC, et al. Simultaneous annihilation of microorganisms and volatile organic compounds from municipal solid waste storage rooms with slightly acidic electrolyzed water[J]. J Environ Manage, 2021, 297: 113414. |
2 | Solomon S, Stachel A, Kelly A, et al. The evaluation of electrolyzed water, sodium dichloroisocya-nurate, and peracetic acid with hydrogen peroxide for the disinfection of patient room surfaces[J]. Am J Infect Control, 2023, 51(4): 367-371. |
3 | AlZain S. Effect of chemical, microwave irradiation, steam autoclave, ultraviolet light radiation, ozone and electrolyzed oxidizing water disinfection on properties of impression materials: a systematic review and meta-analysis study[J]. Saudi Dent J, 2020, 32(4): 161-170. |
4 | Garcia F, Murray PE, Garcia-Godoy F, et al. Effect of Aquatine Endodontic Cleanser on smear layer removal in the root canals of ex vivo human teeth[J]. J Appl Oral Sci, 2010, 18(4): 403-408. |
5 | Rossi-Fedele G, Steier L, Dogramaci EJ, et al. Bovine pulp tissue dissolution ability of HealOzone®, Aquatine Alpha Electrolyte® and sodium hypochlorite[J]. Aust Endod J, 2013, 39(2): 57-61. |
6 | Rossi-Fedele G, de Figueiredo JAP, Steier L, et al. Evaluation of the antimicrobial effect of super-oxidized water (Sterilox®) and sodium hypochlorite against Enterococcus faecalis in a bovine root canal model[J]. J Appl Oral Sci, 2010, 18(5): 498-502. |
7 | Ampiaw RE, Yaqub M, Lee W. Electrolyzed water as a disinfectant: a systematic review of factors affecting the production and efficiency of hypochlorous acid[J]. J Water Process Eng, 2021, 43: 102228. |
8 | Talabi OO, Dorfi AE, O’Neil GD, et al. Membraneless electrolyzers for the simultaneous production of acid and base[J]. Chem Commun (Camb), 2017, 53(57): 8006-8009. |
9 | Wang H, Duan D, Wu Z, et al. Primary concerns regarding the application of electrolyzed water in the meat industry[J]. Food Control, 2019, 95: 50-56. |
10 | 新型氧化电位水[J]. 上海节能, 2020(10): 1231-1232. |
New type of oxidation potential water[J]. Shanghai Energ Saving, 2020(10): 1231-1232. | |
11 | 胡朝霞, 黄岗洪, 徐毅. 一种酸性氧化电位水及其消毒效果研究[J]. 中国洗涤用品工业, 2022(5): 66-70. |
Hu ZX, Huang GH, Xu Y. An electrolyzed oxidizing water and study on its disinfection effect[J]. China Clean Indust, 2022(5): 66-70. | |
12 | Sun JZ, Jiang XJ, Chen YH, et al. Recent trends and applications of electrolyzed oxidizing water in fresh foodstuff preservation and safety control[J]. Food Chem, 2022, 369: 130873. |
13 | Liao LB, Chen WM, Xiao XM. The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water[J]. J Food Eng, 2007, 78(4): 1326-1332. |
14 | Xuan XT, Ling JG. Generation of electrolyzed water[M]//Electrolyzed water in food: fundamentals and applications. Singapore: Springer Singapore, 2019: 1-16. |
15 | Li HY, Liang D, Huang J, et al. The bactericidal efficacy and the mechanism of action of slightly acidic electrolyzed water on Listeria monocytogenes’ survival[J]. Foods, 2021, 10(11): 2671. |
16 | Liu Q, Wu JE, Lim ZY, et al. Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magne-tic resonance spectroscopy[J]. Int J Food Microbiol, 2018, 271: 24-32. |
17 | Ye ZY, Wang S, Chen T, et al. Inactivation mechanism of escherichia coli induced by slightly acidic electrolyzed water[J]. Sci Rep, 2017, 7(1): 6279. |
18 | Villarreal-Barajas T, Vázquez-Durán A, Méndez-Albores A. Effectiveness of electrolyzed oxidizing water on fungi and mycotoxins in food[J]. Food Control, 2022, 131: 108454. |
19 | Zhao L, Li SB, Yang HS. Recent advances on research of electrolyzed water and its applications[J]. Curr Opin Food Sci, 2021, 41: 180-188. |
20 | Okamura T, Tamura M, Suguro H, et al. Bacterici-dal and cytotoxic effects of acid-electrolyzed functional water[J]. J Oral Sci, 2019, 61(4): 512-515. |
21 | Gulabivala K, Stock CJR, Lewsey JD, et al. Effectiveness of electrochemically activated water as an irrigant in an infected tooth model[J]. Int Endod J, 2004, 37(9): 624-631. |
22 | Zan RC, Alacam T, Hubbezoglu I, et al. Antibacte-rial efficacy of super-oxidized water on Enterococcus faecalis biofilms in root canal[J]. Jundishapur J Microbiol, 2016, 9(9): e30000. |
23 | Ogunniyi AD, Dandie CE, Ferro S, et al. Comparative antibacterial activities of neutral electrolyzed oxidizing water and other chlorine-based sanitizers[J]. Sci Rep, 2019, 9(1): 19955. |
24 | Akbulut MB, Unverdi Eldeniz A. In vitro antimicrobial activity of different electrochemically-activated solutions on Enterococcus faecalis [J]. Eur Oral Res, 2019, 53(1): 44-50. |
25 | Hsieh SC, Teng NC, Chu CC, et al. The antibacte-rial efficacy and in vivo toxicity of sodium hypochlorite and electrolyzed oxidizing (EO) water-based endodontic irrigating solutions[J]. Materials (Basel), 2020, 13(2): 260. |
26 | Araújo PA, Mergulhão F, Melo L, et al. The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency[J]. Biofouling, 2014, 30(6): 675-683. |
27 | Cai LL, Hu HJ, Lu Q, et al. Morphophysiological responses of detached and adhered biofilms of Pseudomonas fluorescens to acidic electrolyzed water[J]. Food Microbiol, 2019, 82: 89-98. |
28 | Cheng XG, Tian Y, Zhao CM, et al. Bactericidal effect of strong acid electrolyzed water against flow Enterococcus faecalis biofilms[J]. J Endod, 2016, 42(7): 1120-1125. |
29 | Prabhakaran P, Mariswamy AB. A scanning electron microscope evaluation of efficacy of sodium hypochlorite and Allium sativum in smear layer removal in root canals with the use of modified evacuation system: an ex vivo study[J]. J Conserv Dent, 2018, 21(4): 401-407. |
30 | Mahesh M, Pillai R, Varghese NO, et al. An in vitro study of comparative evaluation of efficacy of electrochemically activated water as a root canal irrigant in smear layer removal[J]. J Conserv Dent, 2020, 23(5): 447-450. |
31 | Bilvinaite G, Zongolaviciute R, Drukteinis S, et al. Cytotoxicity and efficacy in debris and smear layer removal of HOCl-based irrigating solution: an in vitro study[J]. J Funct Biomater, 2022, 13(3): 95. |
32 | Dube K, Jain P. Electrolyzed saline…an alternative to sodium hypochlorite for root canal irrigation[J]. Clujul Med, 2018, 91(3): 322-327. |
33 | Hata G, Hayami S, Weine FS, et al. Effectiveness of oxidative potential water as a root canal irrigant[J]. Int Endod J, 2001, 34(4): 308-317. |
34 | Qing Y, Akita Y, Kawano S, et al. Cleaning efficacy and dentin micro-hardness after root canal irrigation with a strong acid electrolytic water[J]. J Endod, 2006, 32(11): 1102-1106. |
35 | Chen KK, Wu JH, Wei SI, et al. Influence of the acidity of electrolyzed water on the microhardness of inner layer dentin[J]. J Dent Sci, 2019, 14(4): 419-425. |
36 | Ghisi AC, Kopper PM, Baldasso FE, et al. Effect of super-oxidized water, sodium hypochlorite and EDTA on dentin microhardness[J]. Braz Dent J, 2014, 25(5): 420-424. |
37 | Verma N, Sangwan P, Tewari S, et al. Effect of different concentrations of sodium hypochlorite on outcome of primary root canal treatment: a randomized controlled trial[J]. J Endod, 2019, 45(4): 357-363. |
38 | Tavares S, Pintor A, Mourão CFAB, et al. Effect of different root canal irrigant solutions on the release of dentin-growth factors: a systematic review and meta-analysis[J]. Materials (Basel), 2021, 14(19): 5829. |
39 | Morita C, Nishida T, Ito K. Biological toxicity of acid electrolyzed functional water: Effect of oral administration on mouse digestive tract and changes in body weight[J]. Arch Oral Biol, 2011, 56(4): 359-366. |
40 | 陆罗定, 徐德州, 杨明晶. 酸性氧化电位水亚急性毒性研究[J]. 江苏预防医学, 2019, 30(5): 499-501. |
Lu LD, Xu DZ, Yang MJ. Study on subacute toxicities of electrolyzed oxidizing water[J]. Jiangshu J Prev Med, 2019, 30(5): 499-501. | |
41 | Hsieh YL, Yao JC, Hsieh SC, et al. The in vivo to-xicity and antimicrobial properties for electrolyzed oxidizing (EO) water-based mouthwashes[J]. Materials (Basel), 2020, 13(19): 4299. |
[1] | 汪牡丹,宋东哲,黄定明. 开髓洞型对患牙根管治疗术后抗折性能影响的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 186-194. |
[2] | 王璐璇,侯本祥. 根管内氢氧化钙残留对根管治疗的影响[J]. 国际口腔医学杂志, 2022, 49(3): 367-372. |
[3] | 戢晓,景钫淇,李雅,薛晶. 根管预备顺序的数据模拟优化研究[J]. 国际口腔医学杂志, 2022, 49(1): 37-47. |
[4] | 何蓉,刘学军,周宇琨. 光子引导的光声流效应在根管荡洗中应用的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 644-655. |
[5] | 邢桂琪,郭林溪,苏勤. 根管治疗后疾病的综合评估和治疗决策[J]. 国际口腔医学杂志, 2021, 48(5): 579-584. |
[6] | 彭玮琪,高原,徐欣. 髓腔通路设计的微创理念及其研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 433-438. |
[7] | 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274-279. |
[8] | 谭凯璇,李帆,张利娟,李姗姗,卢洁,张颖,杨芳. 根管再治疗并发皮下气肿1例[J]. 国际口腔医学杂志, 2020, 47(5): 563-566. |
[9] | 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296. |
[10] | 许庆安,樊明文. 非器械根管治疗与多声波超洁净系统[J]. 国际口腔医学杂志, 2019, 46(5): 522-525. |
[11] | 黄丽东, 宫玮玉, 董艳梅. 根管冲洗的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 465-472. |
[12] | 马艳群, 李红, 侯本祥. 根尖周膜新附着的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 331-334. |
[13] | 黄晓想, 张茹, 侯本祥. 恒牙根尖区解剖结构对根管治疗的影响[J]. 国际口腔医学杂志, 2017, 44(3): 261-266. |
[14] | 李儒煌,王霄. 根尖手术预后影响因素的研究进展[J]. 国际口腔医学杂志, 2016, 43(6): 721-724. |
[15] | 梁继超 王芬 张凤英 张正华 侯梅娟 庞富生 周锋. Digora及Propex测量根管工作长度准确性的比较研究[J]. 国际口腔医学杂志, 2016, 43(5): 515-518. |
|