国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (4): 401-406.doi: 10.7518/gjkq.2023075

• 牙体牙髓病学专栏 • 上一篇    下一篇

酸性氧化电位水在根管治疗中的研究与应用

高宇天1(),苏勤2()   

  1. 1.口腔疾病研究国家重点实验室;国家口腔疾病临床医学研究中心;四川大学华西口腔医学院 成都 610041
    2.口腔疾病研究国家重点实验室;国家口腔疾病临床医学研究中心;四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2022-11-24 修回日期:2023-04-10 出版日期:2023-07-01 发布日期:2023-06-21
  • 通讯作者: 苏勤
  • 作者简介:高宇天,学士,Email:420857647@qq.com

Research and application of electrolyzed-oxidizing water in the field of root canal treatment

Gao Yutian1(),Su Qin2()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Si-chuan University, Chengdu 610041, China
  • Received:2022-11-24 Revised:2023-04-10 Online:2023-07-01 Published:2023-06-21
  • Contact: Qin Su

摘要:

根管治疗是目前治疗牙髓根尖周疾病最常用的治疗方法。根管治疗成功的关键之一在于有效的根管冲洗。酸性氧化电位水是一种由氯盐电解产生的,具有高氧化还原电位和低pH值,含一定浓度有效氯的液体,具有较强的氧化能力和快速灭菌作用。相较于临床上常用的根管冲洗剂次氯酸钠溶液,酸性氧化电位水对人体无毒,对皮肤黏膜无刺激,对根管玷污层具有一定的清除作用。这些优点使其受到了国内外学者的重视,有望作为一种较为理想的根管冲洗剂应用。本文就目前酸性氧化电位水的制备与保存,用作根管冲洗剂的性能特点、应用前景及存在的问题进行综述。

关键词: 酸性氧化电位水, 根管治疗, 抗菌能力, 玷污层

Abstract:

Root canal therapy is now the most commonly used and effective means for the treatment of pulp and periapical disease. Effective root canal irrigation is important to successful root canal treatment. Electrolyzed-oxidizing water is a kind of water with high oxidation-reduction potential (ORP), low pH, containing a certain concentration of effective chlorine produced by chlorine salt electrolysis, which has strong oxidation ability and can rapidly kill microorganisms. Compared with sodium hypochlorite solution which is the most commonly used root canal irrigant in clinical practice, it is non-toxic to human body, non-irritating to skin and oral mucosa, and even has the ability to remove the smear layer in root canal. These advantages make it valued by scholars at home and abroad, and is hopeful as an ideal root canal irrigant. In this paper, the preparation and preservation, characteristics as a root canal irrigant, application prospects and existing problems of electrolyzed-oxidizing water are reviewed.

Key words: electrolyzed-oxidizing water, root canal irrigation, antibacterial capacity, smear layer

中图分类号: 

  • R 781.05
1 Guo YY, Zhu ZH, Zhao YC, et al. Simultaneous annihilation of microorganisms and volatile organic compounds from municipal solid waste storage rooms with slightly acidic electrolyzed water[J]. J Environ Manage, 2021, 297: 113414.
2 Solomon S, Stachel A, Kelly A, et al. The evaluation of electrolyzed water, sodium dichloroisocya-nurate, and peracetic acid with hydrogen peroxide for the disinfection of patient room surfaces[J]. Am J Infect Control, 2023, 51(4): 367-371.
3 AlZain S. Effect of chemical, microwave irradiation, steam autoclave, ultraviolet light radiation, ozone and electrolyzed oxidizing water disinfection on properties of impression materials: a systematic review and meta-analysis study[J]. Saudi Dent J, 2020, 32(4): 161-170.
4 Garcia F, Murray PE, Garcia-Godoy F, et al. Effect of Aquatine Endodontic Cleanser on smear layer removal in the root canals of ex vivo human teeth[J]. J Appl Oral Sci, 2010, 18(4): 403-408.
5 Rossi-Fedele G, Steier L, Dogramaci EJ, et al. Bovine pulp tissue dissolution ability of HealOzone®, Aquatine Alpha Electrolyte® and sodium hypochlorite[J]. Aust Endod J, 2013, 39(2): 57-61.
6 Rossi-Fedele G, de Figueiredo JAP, Steier L, et al. Evaluation of the antimicrobial effect of super-oxidized water (Sterilox®) and sodium hypochlorite against Enterococcus faecalis in a bovine root canal model[J]. J Appl Oral Sci, 2010, 18(5): 498-502.
7 Ampiaw RE, Yaqub M, Lee W. Electrolyzed water as a disinfectant: a systematic review of factors affecting the production and efficiency of hypochlorous acid[J]. J Water Process Eng, 2021, 43: 102228.
8 Talabi OO, Dorfi AE, O’Neil GD, et al. Membraneless electrolyzers for the simultaneous production of acid and base[J]. Chem Commun (Camb), 2017, 53(57): 8006-8009.
9 Wang H, Duan D, Wu Z, et al. Primary concerns regarding the application of electrolyzed water in the meat industry[J]. Food Control, 2019, 95: 50-56.
10 新型氧化电位水[J]. 上海节能, 2020(10): 1231-1232.
New type of oxidation potential water[J]. Shanghai Energ Saving, 2020(10): 1231-1232.
11 胡朝霞, 黄岗洪, 徐毅. 一种酸性氧化电位水及其消毒效果研究[J]. 中国洗涤用品工业, 2022(5): 66-70.
Hu ZX, Huang GH, Xu Y. An electrolyzed oxidizing water and study on its disinfection effect[J]. China Clean Indust, 2022(5): 66-70.
12 Sun JZ, Jiang XJ, Chen YH, et al. Recent trends and applications of electrolyzed oxidizing water in fresh foodstuff preservation and safety control[J]. Food Chem, 2022, 369: 130873.
13 Liao LB, Chen WM, Xiao XM. The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water[J]. J Food Eng, 2007, 78(4): 1326-1332.
14 Xuan XT, Ling JG. Generation of electrolyzed water[M]//Electrolyzed water in food: fundamentals and applications. Singapore: Springer Singapore, 2019: 1-16.
15 Li HY, Liang D, Huang J, et al. The bactericidal efficacy and the mechanism of action of slightly acidic electrolyzed water on Listeria monocytogenes’ survival[J]. Foods, 2021, 10(11): 2671.
16 Liu Q, Wu JE, Lim ZY, et al. Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magne-tic resonance spectroscopy[J]. Int J Food Microbiol, 2018, 271: 24-32.
17 Ye ZY, Wang S, Chen T, et al. Inactivation mechanism of escherichia coli induced by slightly acidic electrolyzed water[J]. Sci Rep, 2017, 7(1): 6279.
18 Villarreal-Barajas T, Vázquez-Durán A, Méndez-Albores A. Effectiveness of electrolyzed oxidizing water on fungi and mycotoxins in food[J]. Food Control, 2022, 131: 108454.
19 Zhao L, Li SB, Yang HS. Recent advances on research of electrolyzed water and its applications[J]. Curr Opin Food Sci, 2021, 41: 180-188.
20 Okamura T, Tamura M, Suguro H, et al. Bacterici-dal and cytotoxic effects of acid-electrolyzed functional water[J]. J Oral Sci, 2019, 61(4): 512-515.
21 Gulabivala K, Stock CJR, Lewsey JD, et al. Effectiveness of electrochemically activated water as an irrigant in an infected tooth model[J]. Int Endod J, 2004, 37(9): 624-631.
22 Zan RC, Alacam T, Hubbezoglu I, et al. Antibacte-rial efficacy of super-oxidized water on Enterococcus faecalis biofilms in root canal[J]. Jundishapur J Microbiol, 2016, 9(9): e30000.
23 Ogunniyi AD, Dandie CE, Ferro S, et al. Comparative antibacterial activities of neutral electrolyzed oxidizing water and other chlorine-based sanitizers[J]. Sci Rep, 2019, 9(1): 19955.
24 Akbulut MB, Unverdi Eldeniz A. In vitro antimicrobial activity of different electrochemically-activated solutions on Enterococcus faecalis [J]. Eur Oral Res, 2019, 53(1): 44-50.
25 Hsieh SC, Teng NC, Chu CC, et al. The antibacte-rial efficacy and in vivo toxicity of sodium hypochlorite and electrolyzed oxidizing (EO) water-based endodontic irrigating solutions[J]. Materials (Basel), 2020, 13(2): 260.
26 Araújo PA, Mergulhão F, Melo L, et al. The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency[J]. Biofouling, 2014, 30(6): 675-683.
27 Cai LL, Hu HJ, Lu Q, et al. Morphophysiological responses of detached and adhered biofilms of Pseudomonas fluorescens to acidic electrolyzed water[J]. Food Microbiol, 2019, 82: 89-98.
28 Cheng XG, Tian Y, Zhao CM, et al. Bactericidal effect of strong acid electrolyzed water against flow Enterococcus faecalis biofilms[J]. J Endod, 2016, 42(7): 1120-1125.
29 Prabhakaran P, Mariswamy AB. A scanning electron microscope evaluation of efficacy of sodium hypochlorite and Allium sativum in smear layer removal in root canals with the use of modified evacuation system: an ex vivo study[J]. J Conserv Dent, 2018, 21(4): 401-407.
30 Mahesh M, Pillai R, Varghese NO, et al. An in vitro study of comparative evaluation of efficacy of electrochemically activated water as a root canal irrigant in smear layer removal[J]. J Conserv Dent, 2020, 23(5): 447-450.
31 Bilvinaite G, Zongolaviciute R, Drukteinis S, et al. Cytotoxicity and efficacy in debris and smear layer removal of HOCl-based irrigating solution: an in vitro study[J]. J Funct Biomater, 2022, 13(3): 95.
32 Dube K, Jain P. Electrolyzed saline…an alternative to sodium hypochlorite for root canal irrigation[J]. Clujul Med, 2018, 91(3): 322-327.
33 Hata G, Hayami S, Weine FS, et al. Effectiveness of oxidative potential water as a root canal irrigant[J]. Int Endod J, 2001, 34(4): 308-317.
34 Qing Y, Akita Y, Kawano S, et al. Cleaning efficacy and dentin micro-hardness after root canal irrigation with a strong acid electrolytic water[J]. J Endod, 2006, 32(11): 1102-1106.
35 Chen KK, Wu JH, Wei SI, et al. Influence of the acidity of electrolyzed water on the microhardness of inner layer dentin[J]. J Dent Sci, 2019, 14(4): 419-425.
36 Ghisi AC, Kopper PM, Baldasso FE, et al. Effect of super-oxidized water, sodium hypochlorite and EDTA on dentin microhardness[J]. Braz Dent J, 2014, 25(5): 420-424.
37 Verma N, Sangwan P, Tewari S, et al. Effect of different concentrations of sodium hypochlorite on outcome of primary root canal treatment: a randomized controlled trial[J]. J Endod, 2019, 45(4): 357-363.
38 Tavares S, Pintor A, Mourão CFAB, et al. Effect of different root canal irrigant solutions on the release of dentin-growth factors: a systematic review and meta-analysis[J]. Materials (Basel), 2021, 14(19): 5829.
39 Morita C, Nishida T, Ito K. Biological toxicity of acid electrolyzed functional water: Effect of oral administration on mouse digestive tract and changes in body weight[J]. Arch Oral Biol, 2011, 56(4): 359-366.
40 陆罗定, 徐德州, 杨明晶. 酸性氧化电位水亚急性毒性研究[J]. 江苏预防医学, 2019, 30(5): 499-501.
Lu LD, Xu DZ, Yang MJ. Study on subacute toxicities of electrolyzed oxidizing water[J]. Jiangshu J Prev Med, 2019, 30(5): 499-501.
41 Hsieh YL, Yao JC, Hsieh SC, et al. The in vivo to-xicity and antimicrobial properties for electrolyzed oxidizing (EO) water-based mouthwashes[J]. Materials (Basel), 2020, 13(19): 4299.
[1] 汪牡丹,宋东哲,黄定明. 开髓洞型对患牙根管治疗术后抗折性能影响的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 186-194.
[2] 王璐璇,侯本祥. 根管内氢氧化钙残留对根管治疗的影响[J]. 国际口腔医学杂志, 2022, 49(3): 367-372.
[3] 戢晓,景钫淇,李雅,薛晶. 根管预备顺序的数据模拟优化研究[J]. 国际口腔医学杂志, 2022, 49(1): 37-47.
[4] 何蓉,刘学军,周宇琨. 光子引导的光声流效应在根管荡洗中应用的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 644-655.
[5] 邢桂琪,郭林溪,苏勤. 根管治疗后疾病的综合评估和治疗决策[J]. 国际口腔医学杂志, 2021, 48(5): 579-584.
[6] 彭玮琪,高原,徐欣. 髓腔通路设计的微创理念及其研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 433-438.
[7] 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274-279.
[8] 谭凯璇,李帆,张利娟,李姗姗,卢洁,张颖,杨芳. 根管再治疗并发皮下气肿1例[J]. 国际口腔医学杂志, 2020, 47(5): 563-566.
[9] 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296.
[10] 许庆安,樊明文. 非器械根管治疗与多声波超洁净系统[J]. 国际口腔医学杂志, 2019, 46(5): 522-525.
[11] 黄丽东, 宫玮玉, 董艳梅. 根管冲洗的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 465-472.
[12] 马艳群, 李红, 侯本祥. 根尖周膜新附着的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 331-334.
[13] 黄晓想, 张茹, 侯本祥. 恒牙根尖区解剖结构对根管治疗的影响[J]. 国际口腔医学杂志, 2017, 44(3): 261-266.
[14] 李儒煌,王霄. 根尖手术预后影响因素的研究进展[J]. 国际口腔医学杂志, 2016, 43(6): 721-724.
[15] 梁继超 王芬 张凤英 张正华 侯梅娟 庞富生 周锋. Digora及Propex测量根管工作长度准确性的比较研究[J]. 国际口腔医学杂志, 2016, 43(5): 515-518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .