国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (6): 724-730.doi: 10.7518/gjkq.2022102

• 综述 • 上一篇    下一篇

无机纳米粒子在牙周病诊疗中的研究进展

李伟光(),吴亚菲,郭淑娟()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2022-01-07 修回日期:2022-07-20 出版日期:2022-11-01 发布日期:2022-11-03
  • 通讯作者: 郭淑娟
  • 作者简介:李伟光,硕士,Email:2692888744@qq.com
  • 基金资助:
    四川省科技厅重点研发项目(2020YFS0175)

Research progress on the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease

Li Weiguang(),Wu Yafei,Guo Shujuan.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-01-07 Revised:2022-07-20 Online:2022-11-01 Published:2022-11-03
  • Contact: Shujuan. Guo
  • Supported by:
    Key Research and Development Project of Sichuan Provincial Department of Science and Technology(2020YFS0175)

摘要:

无机纳米粒子(INPs)一般指结构单元的尺寸在1~100 nm的由非碳元素组成的新型纳米多功能材料。INPs具有生物相容性好、比表面积高、化学性质稳定、机械强度优良、成本低等诸多优势。INPs在抗菌、细胞标记、组织再生、药物靶向运输等方面研究广泛,在牙周疾病诊疗中的应用价值也受到了越来越多的关注。本文就INPs在牙周病的诊断和抗菌治疗,调节牙周局部免疫微环境,作为牙周药物载体以及促进牙周组织再生等多个方面的研究进展进行综述。

关键词: 无机纳米粒子, 牙周病, 生物活性材料, 诊断, 治疗

Abstract:

Inorganic nanoparticles generally refer to new nano multifunctional materials that are composed of non-carbon elements with structural units ranging from 1 nm to 100 nm in size. They have many advantages, such as good biocompatibility, high specific surface areas, stable chemical properties, excellent mechanical strength, and low cost. Inorga-nic nanoparticles have been widely studied in the fields of antibacterial applications, cell labeling, tissue regeneration, and targeted drug transport. Their application value in the diagnosis and treatment of periodontal diseases has also attracted increasing attention. The progress in the use of inorganic nanoparticles in the diagnosis and treatment of periodontal disease, including their application in diagnosis, antibacterial treatment, regulating the local immune microenvironment of perio-dontal tissues, carrying periodontal drugs, and promoting periodontal tissue regeneration, is summarized.

Key words: inorganic nanoparticles, periodontal disease, bioactive materials, diagnosis, treatment

中图分类号: 

  • R 781.4+2
1 Padovani GC, Feitosa VP, Sauro S, et al. Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects[J]. Trends Biotechnol, 2015, 33(11): 621-636.
2 Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities[J]. Arab J Chem, 2019, 12(7): 908-931.
3 Plan Sangnier A, van de Walle AB, Curcio A, et al. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells[J]. Nanoscale, 2019, 11(35): 16488-16498.
4 闵洁, 何丽华, 郑荣, 等. 核/壳结构磁性Fe3O4 @SiO2纳米粒子的制备及表征[J]. 现代化工, 2021, 41(2): 146-150.
Min J, He LH, Zheng R, et al. Preparation and cha-racterizations of core-shell structural Fe3O4 @SiO2 magnetic nanoparticles[J]. Modern Chem Indust, 2021, 41(2): 146-150.
5 Zhang WJ, Yang GZ, Wang XS, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration[J]. Adv Mater, 2017, 29(43). doi: 10.1002/adma.201703795 .
doi: 10.1002/adma.201703795
6 张松, 刘源森, 唐旭, 等. 氧化石墨烯/迷迭香酸纳米复合材料的制备及其抗菌性能研究[J]. 化工新型材料, 2021, 49(4): 127-132.
Zhang S, Liu YS, Tang X, et al. Preparation and antibacterial property of GO-RA nanocomposite[J]. New Chem Mater, 2021, 49(4): 127-132.
7 Bayda S, Adeel M, Tuccinardi T, et al. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine[J]. Molecules, 2019, 25(1): E112.
8 Wiechers JW, Musee N. Engineered inorganic nano-particles and cosmetics: facts, issues, knowledge gaps and challenges[J]. J Biomed Nanotechnol, 2010, 6(5): 408-431.
9 Teng WY, Jeng SC, Kuo CW, et al. Nanoparticles-doped guest-host liquid crystal displays[J]. Opt Lett, 2008, 33(15): 1663-1665.
10 NazariA, Riahi S. The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete[J].Compos Part B: Eng, 2011, 42(3): 570-578.
11 Banerjee D, Sengupta S. Nanoparticles in cancer chemotherapy[J]. 2011, 104: 489-507.
12 Bull E, Madani SY, Sheth R, et al. Stem cell trac-king using iron oxide nanoparticles[J]. Int J Nanomedicine, 2014, 9: 1641-1653.
13 Henstock JR, Rotherham M, Rashidi H, et al. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy[J]. Stem Cells Transl Med, 2014, 3(11): 1363-1374.
14 Wang QW, Chen B, Cao M, et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of h-BMSCs[J]. Biomaterials, 2016, 86: 11-20.
15 Ren MS, Wang Y, Luo Y, et al. Functionalized nano-particles in prevention and targeted therapy of viral diseases with neurotropism properties, special insight on COVID-19[J]. Front Microbiol, 2021, 12: 767104.
16 Witkowska E, Łasica AM, Niciński K, et al. In search of spectroscopic signatures of periodontitis: a SERS-based magnetomicrofluidic sensor for detection of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans [J]. ACS Sens, 2021, 6(4): 1621-1635.
17 秦尉. 多功能纳米微球特异性检测牙龈卟啉单胞菌的实验研究[D]. 天津: 天津医科大学, 2017.
Qin W. Experimental study on the detection of Porphyromonas gingivalis with multifunctional nanospheres[D]. Tianjin: Tianjin Medical Unversity, 2017.
18 Muzammil, Jayanthi D, Faizuddin M, et al. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis[J]. J Investig Clin Dent, 2017, 8(2). doi: 10.1111/jicd.12200 .
doi: 10.1111/jicd.12200
19 Cekici A, Kantarci A, Hasturk H, et al. Inflammatory and immune pathways in the pathogenesis of pe-riodontal disease[J]. Periodontol 2000, 2014, 64(1): 57-80.
20 戴智赫. 磁性上转换微球检测龈下菌斑中单纯疱疹病毒的研究[D]. 天津: 天津医科大学, 2018.
Dai ZH. Study on specific detection of herpes simplex virus in subgingival plague by magnetic upconversion microspheres[D]. Tianjin: Tianjin Medical Unversity, 2018.
21 Junmahasathien T, Panraksa P, Protiarn P, et al. Preparation and evaluation of metronidazole-loaded pectin films for potentially targeting a microbial infection associated with periodontal disease[J]. Polymers (Basel), 2018, 10(9): E1021.
22 Rams TE, Degener JE, van Winkelhoff AJ. Antibio-tic resistance in human chronic periodontitis microbiota[J]. J Periodontol, 2014, 85(1): 160-169.
23 Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles[J]. Nanomedicine, 2007, 3(1): 95-101.
24 Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nanomicro Lett, 2015, 7(3): 219-242.
25 Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020, 15: 2555-2562.
26 Durán N, Nakazato G, Seabra AB. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments[J]. Appl Microbiol Biotechnol, 2016, 100(15): 6555-6570.
27 Lu Z, Rong KF, Li J, et al. Size-dependent antibacterial activities of silver nanoparticles against oral a-naerobic pathogenic bacteria[J]. J Mater Sci Mater Med, 2013, 24(6): 1465-1471.
28 Holden MS, Black J, Lewis A, et al. Antibacterial activity of partially oxidized Ag/Au nanoparticles against the oral pathogen Porphyromonas gingivalis W83[J]. J Nanomater, 2016, 2016: 9605906.
29 Wu T, Huang L, Sun J, et al. Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease[J]. Carbohydr Polym, 2021, 269: 118276.
30 Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury[J]. Brain Res, 2015, 1619: 1-11.
31 Bai X, Chen D, Dai Y, et al. Bone formation reco-very with gold nanoparticle-induced M2 macrophage polarization in mice[J]. Nanomedicine, 2021,38:102457.
32 Ni C, Zhou J, Kong N, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment[J]. Biomaterials, 2019, 206: 115-132.
33 Li X, Qi ML, Li CY, et al. Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis[J]. J Mater Chem B, 2019, 7(44): 6955-6971.
34 Tsai CY, Lu SL, Hu CW, et al. Size-dependent atte-nuation of TLR9 signaling by gold nanoparticles in macrophages[J]. J Immunol, 2012, 188(1): 68-76.
35 Kong LX, Peng Z, Li SD, et al. Nanotechnology and its role in the management of periodontal disea-ses[J]. Periodontol 2000, 2006, 40: 184-196.
36 Martin V, Ribeiro IAC, Alves MM, et al. Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal di-sease treatment[J]. Int J Pharm, 2019, 572: 118821.
37 Sun QH, Zhou ZX, Qiu NS, et al. Rational design of cancer nanomedicine: nanoproperty integration and synchronization[J]. Adv Mater, 2017, 29(14). doi:10.1002/adma.201606628 .
doi: 10.1002/adma.201606628
38 Emmanuel R, Palanisamy S, Chen SM, et al. Antimicrobial efficacy of green synthesized drug blen-ded silver nanoparticles against dental caries and periodontal disease causing microorganisms[J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 374-379.
39 秦黎黎, 秦瑶, 卢天凤. 纳米材料作为药物载体在运动性损伤修复中的应用[J]. 同济大学学报(医学版), 2021, 42(2): 271-277.
Qin LL, Qin Y, Lu TF. Application of nanomaterials as drug carrier in the athletic injury repair[J]. J Tongji Univ (Med Sci), 2021, 42(2): 271-277.
40 Backlund CJ, Worley BV, Sergesketter AR, et al. Kinetic-dependent killing of oral pathogens with nitric oxide[J]. J Dent Res, 2015, 94(8): 1092-1098.
41 Liu ZN, Chen X, Zhang ZP, et al. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss[J]. ACS Nano, 2018, 12(10): 9785-9799.
42 王煦漫, 古宏晨, 杨正强, 等. 磁热疗用Fe3O4在交变磁场中的热效应[J]. 上海交通大学学报, 2005, 2005(2): 275-278.
Wang XM, Gu HC, Yang ZQ, et al. The heat effect of magnetite for hyperthermia under alternating magnetic field[J]. J Shanghai Jiaotong Univ, 2005, 2005(2): 275-278.
43 de Alcântara Sica de Toledo L, Rosseto HC, dos Santos RS, et al. Thermal magnetic field activated propolis release from liquid crystalline system based on magnetic nanoparticles[J]. AAPS Pharm Sci Tech, 2018, 19(7): 3258-3271.
44 Xiong F, Wang H, Feng YD, et al. Cardioprotective activity of iron oxide nanoparticles[J]. Sci Rep, 2015, 5: 8579.
45 Zhang YH, Kong N, Zhang YC, et al. Size-dependent effects of gold nanoparticles on osteogenic differentiation of human periodontal ligament progenitor cells[J]. Theranostics, 2017, 7(5): 1214-1224.
46 Wang QW, Chen B, Ma F, et al. Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2[J]. Nano Res, 2017, 10(2): 626-642.
47 Zhang YH, Wang P, Wang YX, et al. Gold nanoparticles promote the bone regeneration of periodontal ligament stem cell sheets through activation of autophagy[J]. Int J Nanomedicine, 2021, 16: 61-73.
48 Xia Y, Chen HM, Zhao YT, et al. Novel magnetic calcium phosphate-stem cell construct with magne-tic field enhances osteogenic differentiation and bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 30-41.
49 Jiang PF, Zhang YX, Zhu CN, et al. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field[J]. Acta Biomater, 2016, 46: 141-150.
50 Ren SS, Zhou Y, Zheng K, et al. Cerium oxide nano-particles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering[J]. Bioact Mater, 2022, 7: 242-253.
51 Peng WZ, Ren SS, Zhang YB, et al. MgO nanoparticles-incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration[J]. Front Bioeng Biotechnol, 2021, 9: 668428.
[1] 刘世一, 陈中, 张素欣. 程序性死亡受体/配体免疫治疗策略在人乳头瘤病毒阳性头颈部鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 21-27.
[2] 和子慕, 李风兰. 数字化口腔定位支架在头颈部肿瘤放射治疗中的应用现状[J]. 国际口腔医学杂志, 2024, 51(1): 28-35.
[3] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[4] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[5] 韩冲,何东宁,余飞燕,吴东潮. 口腔种植术后疼痛机制及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 99-106.
[6] 胡佳,王秀清,卢国英,黄晓晶. 再生性牙髓治疗在成人根尖发育不全恒牙应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 686-695.
[7] 陆磊,王鑫,康泽标,谢富强. 计算机辅助导航手术在复杂颌面部骨折中的应用新进展[J]. 国际口腔医学杂志, 2023, 50(6): 696-703.
[8] 杨冬叶,朱萍,吴淑仪. 舌位的影响因素及临床意义[J]. 国际口腔医学杂志, 2023, 50(6): 723-728.
[9] 刘洋,尹德强. 关于颌位调整方法的思考和改进[J]. 国际口腔医学杂志, 2023, 50(5): 499-505.
[10] 李奕君, 徐子昂, 李一. 前哨淋巴结在头颈部鳞状细胞癌检测的应用进展[J]. 国际口腔医学杂志, 2023, 50(5): 521-527.
[11] 戢晓,张岚,黄定明. 牙源性与非牙源性上颌窦炎鉴别诊断及其治疗方案的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 566-572.
[12] 赵苑汐,苏勤. 根管再治疗中根管充填物去除辅助技术的应用与发展[J]. 国际口腔医学杂志, 2023, 50(5): 581-586.
[13] 宋文鹏,龚蓓文,李聃,曾剑玉,仇玲玲. 机械疗法在正畸治疗中应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 603-612.
[14] 刘婷,武秀萍. 唐氏综合征的口腔-颅颌面表征及治疗进展[J]. 国际口腔医学杂志, 2023, 50(5): 618-622.
[15] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .