国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (1): 99-106.doi: 10.7518/gjkq.2024002

• 综述 • 上一篇    下一篇

口腔种植术后疼痛机制及治疗的研究进展

韩冲1(),何东宁2(),余飞燕2,吴东潮1   

  1. 1.山西医科大学口腔医学院 太原 030001
    2.山西医科大学口腔医院种植科 太原 030001
  • 收稿日期:2023-02-28 修回日期:2023-07-06 出版日期:2024-01-01 发布日期:2024-01-10
  • 通讯作者: 何东宁
  • 作者简介:韩冲,硕士,Email:hchong624427144@163.com
  • 基金资助:
    国家自然科学基金青年项目(82001075);山西省科技厅自然科学基金面上项目(202103021224232)

Research progress on the mechanism and treatment of pain after oral implants

Han Chong1(),He Dongning2(),Yu Feiyan2,Wu Dongchao1   

  1. 1.School of Stomatology, Shanxi Medical University, Taiyuan 030001, China
    2.Dept. of Dental Implantology, Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
  • Received:2023-02-28 Revised:2023-07-06 Online:2024-01-01 Published:2024-01-10
  • Contact: Dongning He
  • Supported by:
    National Natural Science Foundation of China(82001075);Natural Science Foundation of the Science and Technology Department of Shanxi Province(202103021224232)

摘要:

随着口腔种植技术的快速发展,在牙列缺损或牙列缺失患者中,口腔种植修复已逐渐成为一种常规的修复方式。然而,口腔种植术作为“侵入性”治疗,即使经过准确的术前评估和规范的外科手术,患者也可能出现术后疼痛。术后疼痛会影响患者的语言交流、咀嚼及吞咽等,使患者的生活质量降低,甚至可引起医疗事故。随着种植手术的普及,未来可能会有更多的患者遭受种植术后疼痛,尤其是种植术后神经病理性疼痛,其治疗难度仍较大,且治疗药物的疗效往往不确切,并与各种不良反应有关。本文介绍了种植术后疼痛的相关机制,对种植术后疼痛的治疗进行概括,并结合当前研究热点提出未来治疗种植术后神经病理性疼痛的潜在靶点,旨在为开展相关临床工作提供新思路。

关键词: 口腔种植, 神经病理性疼痛, 中枢敏化, 外周敏化, 靶点治疗

Abstract:

With the rapid development of dental implant technology, the use of oral implants to replace missing teeth has gradually become a routine restorative modality in patients with dentition defects or dentition loss. However, dental implant surgery is an invasive treatment, and the postoperative pain of surgery after implant placement occurs despite accurate evaluation and careful treatment. Postoperative pain will affect the daily life of patients, such as language communication, chewing, and swallowing, and in serious cases, even cause medical accidents. With the popularity of implant surgery, numerous patients may suffer from post-implant pain in the future. In particular, neuropathic pain after dental implants remains difficult to treat, and the efficacy of therapeutic drugs is often inaccurate, which is related to various adverse effects. This article introduces the related mechanisms of pain after dental implants, gives an overview of the treatment of pain after dental implants, and proposes potential targets for the future treatment of neuropathic pain after dental implants in the context of current research hotspots. This paper aims to provide new ideas for conducting relevant clinical studies.

Key words: dental implants, neuropathic pain, central sensitization, peripheral sensitization, target treatment

中图分类号: 

  • R783.4
1 Adler L, Buhlin K, Jansson L. Survival and complications: a 9- to 15-year retrospective follow-up of dental implant therapy[J]. J Oral Rehabil, 2020, 47(1): 67-77.
2 Al-Sabbagh M, Okeson JP, Khalaf MW, et al. Persistent pain and neurosensory disturbance after dental implant surgery: pathophysiology, etiology, and dia-gnosis[J]. Dent Clin North Am, 2015, 59(1): 131-142.
3 Kim S, Lee YJ, Lee S, et al. Assessment of pain and anxiety following surgical placement of dental implants[J]. Int J Oral Maxillofac Implants, 2013, 28(2): 531-535.
4 Vázquez-Delgado E, Viaplana-Gutiérrez M, Figuei-redo R, et al. Prevalence of neuropathic pain and sensory alterations after dental implant placement in a university-based oral surgery department: a retrospective cohort study[J]. Gerodontology, 2018, 35(2): 117-122.
5 Wu XY, Ye MJ, Sun JH, et al. Patient-reported outcome measures following surgeries in implant dentistry and associated factors: a cross-sectional study[J]. BMJ Open, 2022, 12(6): e059730.
6 Delcanho R, Moncada E. Persistent pain after dental implant placement: a case of implant-related nerve injury[J]. J Am Dent Assoc, 2014, 145(12): 1268-1271.
7 Khouly I, Braun RS, Ordway M, et al. Post-operative pain management in dental implant surgery: a systematic review and meta-analysis of randomized clinical trials[J]. Clin Oral Investig, 2021, 25(5): 2511-2536.
8 Bryce G, Bomfim DI, Bassi GS. Pre- and post-ope-rative management of dental implant placement. Part 1: management of post-operative pain[J]. Br Dent J, 2014, 217(3): 123-127.
9 Amadou-Diaw N, Braud A, Y.Persistent Boucher, neuropathic-like trigeminal pain after dental implant loading[J]. J Clin Exp Dent, 2022, 14(2): e185-e191.
10 Kim HK, Kim ME. Quantitative and qualitative sensory testing results are associated with numbness rather than neuropathic pain in patients with post-implant trigeminal neuropathy: a cross-sectional pilot study[J]. Somatosens Mot Res, 2019, 36(3): 202-211.
11 Juodzbalys G, Wang HL, Sabalys G. Injury of the inferior alveolar nerve during implant placement: a literature review[J]. J Oral Maxillofac Res, 2011, 2(1): e1.
12 Chichorro JG, Porreca F, Sessle B. Mechanisms of craniofacial pain[J]. Cephalalgia, 2017, 37(7): 613-626.
13 Hossain MZ, Ando H, Unno S, et al. Targeting peripherally restricted cannabinoid receptor 1, cannabinoid receptor 2, and endocannabinoid-degrading enzymes for the treatment of neuropathic pain inclu-ding neuropathic orofacial pain[J]. Int J Mol Sci, 2020, 21(4): 1423.
14 Sessle BJ. Chronic orofacial pain: models, mechanisms, and genetic and related environmental in-fluences[J]. Int J Mol Sci, 2021, 22(13): 7112.
15 Halievski K, Ghazisaeidi S, Salter MW. Sex-dependent mechanisms of chronic pain: a focus on microglia and P2X4R[J]. J Pharmacol Exp Ther, 2020, 375(1): 202-209.
16 Danyluk H, Ishaque A, Ta D, et al. MRI texture analysis reveals brain abnormalities in medically refractory trigeminal neuralgia[J]. Front Neurol, 2021, 12: 626504.
17 Tohyama S, Hung PS, Cheng JC, et al. Trigeminal neuralgia associated with a solitary pontine lesion: clinical and neuroimaging definition of a new syndrome[J]. Pain, 2020, 161(5): 916-925.
18 Danyluk H, Andrews J, Kesarwani R, et al. The tha-lamus in trigeminal neuralgia: structural and metabolic abnormalities, and influence on surgical response[J]. BMC Neurol, 2021, 21(1): 290.
19 Ye Y, Salvo E, Romero-Reyes M, et al. Glia and orofacial pain: progress and future directions[J]. Int J Mol Sci, 2021, 22(10): 5345.
20 Ikeda H, Kiritoshi T, Murase K. Contribution of microglia and astrocytes to the central sensitization, inflammatory and neuropathic pain in the juvenile rat[J]. Mol Pain, 2012, 8: 43.
21 Yin N, Yan ES, Duan WB, et al. The role of micro-glia in chronic pain and depression: innocent bystan-der or culprit[J]. Psychopharmacology, 2021, 238(4): 949-958.
22 Iwata K, Katagiri A, Shinoda M. Neuron-glia interaction is a key mechanism underlying persistent orofacial pain[J]. J Oral Sci, 2017, 59(2): 173-175.
23 North RA. P2X receptors[J]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1700): 20150427.
24 Jané-Salas E, Roselló-LLabrés X, Jané-Pallí E, et al. Open flap versus flapless placement of dental implants. A randomized controlled pilot trial[J]. Odontology, 2018, 106(3): 340-348.
25 Mei CC, Lee FY, Yeh HC. Assessment of pain perception following periodontal and implant surgeries[J]. J Clin Periodontol, 2016, 43(12): 1151-1159.
26 Wang MJ, Li YY, Li JY, et al. The risk of moderate-to-severe post-operative pain following the placement of dental implants[J]. J Oral Rehabil, 2019, 46(9): 836-844.
27 Mattos-Pereira GH, Martins CC, Esteves-Lima RP, et al. Preemptive analgesia in dental implant surgery: a systematic review and meta-analysis of randomized controlled trials[J]. Med Oral Patol Oral Cir Bucal, 2021, 26(5): e632-e641.
28 Sánchez-Siles M, Torres-Diez LC, Camacho-Alonso F, et al. High volume local anesthesia as a postoperative factor of pain and swelling in dental implants[J]. Clin Implant Dent Relat Res, 2014, 16(3): 429-434.
29 Porporatti AL, Bonjardim LR, Stuginski-Barbosa J, et al. Pain from dental implant placement, inflammatory pulpitis pain, and neuropathic pain present different somatosensory profiles[J]. J Oral Facial Pain Headache, 2017, 31(1): 19-29.
30 Zhang X, Wang B, Qiao SC, et al. A study on the prevalence of dental anxiety, pain perception, and their interrelationship in Chinese patients with oral implant surgery[J]. Clin Implant Dent Relat Res, 2019, 21(3): 428-435.
31 Urban T, Wenzel A. Discomfort experienced after immediate implant placement associated with three different regenerative techniques[J]. Clin Oral Implants Res, 2010, 21(11): 1271-1277.
32 Al-Sabbagh M, Okeson JP, Bertoli E, et al. Persistent pain and neurosensory disturbance after dental implant surgery: prevention and treatment[J]. Dent Clin North Am, 2015, 59(1): 143-156.
33 Al-Khabbaz AK, Griffin TJ, Al-Shammari KF. Assessment of pain associated with the surgical placement of dental implants[J]. J Periodontol, 2007, 78(2): 239-246.
34 Khan J, Zusman T, Wang Q, et al. Acute and chronic pain in orofacial trauma patients[J]. Dent Traumatol, 2019, 35(6): 348-357.
35 Díaz-Rodríguez L, García-Martínez O, Arroyo-Morales M, et al. Effect of acetaminophen (parace-tamol) on human osteosarcoma cell line MG63[J]. Acta Pharmacol Sin, 2010, 31(11): 1495-1499.
36 Kellinsalmi M, Parikka V, Risteli J, et al. Inhibition of cyclooxygenase-2 down-regulates osteoclast and osteoblast differentiation and favours adipocyte formation in vitro [J]. Eur J Pharmacol, 2007, 572(2/3): 102-110.
37 郑小菲, 游智惟, 莫安春. 非甾体类抗炎药对种植体周围骨愈合和骨改建的影响[J]. 国际口腔医学杂志, 2015, 42(2): 184-188.
Zheng XF, You ZW, Mo AC. Effect of non-steroidal anti-inflammatory drug on healing and remolding of peri-implant bones[J]. Int J Stomatol, 2015, 42(2): 184-188.
38 Winnett B, Tenenbaum HC, Ganss B, et al. Periope-rative use of non-steroidal anti-inflammatory drugs might impair dental implant osseointegration[J]. Clin Oral Implants Res, 2016, 27(2): e1-e7.
39 Chopra D, Rehan HS, Mehra P, et al. A randomized, double-blind, placebo-controlled study comparing the efficacy and safety of paracetamol, serratiopeptidase, ibuprofen and betamethasone using the dental impaction pain model[J]. Int J Oral Maxillofac Surg, 2009, 38(4): 350-355.
40 Walsh S, Jordan GR, Jefferiss C, et al. High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis[J]. Rheumato-logy, 2001, 40(1): 74-83.
41 Okeson JP. Bell’s oral and facial pain[M]. 7th ed. Chicago: Quintessence Publishing Co, Inc, 2014: 185-186.
42 Melini M, Forni A, Cavallin F, et al. Analgesics for dental implants: a systematic review[J]. Front Pharmacol, 2020, 11: 634963.
43 Politis C, Agbaje J, van Hevele J, et al. Report of neuropathic pain after dental implant placement: a case series[J]. Int J Oral Maxillofac Implants, 2017, 32(2): 439-444.
44 Zakrzewska JM. Medical management of trigeminal neuropathic pains[J]. Expert Opin Pharmacother, 2010, 11(8): 1239-1254.
45 Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis[J]. Lancet Neurol, 2015, 14(2): 162-173.
46 Alvarez P, Brun A, Labertrandie A, et al. Antihype-ralgesic effects of clomipramine and tramadol in a model of posttraumatic trigeminal neuropathic pain in mice[J]. J Orofac Pain, 2011, 25(4): 354-363.
47 Lau BK, Vaughan CW. Targeting the endogenous cannabinoid system to treat neuropathic pain[J]. Front Pharmacol, 2014, 5: 28.
48 Michot B, Bourgoin S, Kayser V, et al. Effects of tapentadol on mechanical hypersensitivity in rats with ligatures of the infraorbital nerve versus the sciatic nerve[J]. Eur J Pain, 2013, 17(6): 867-880.
49 Duehmke RM, Derry S, Wiffen PJ, et al. Tramadol for neuropathic pain in adults[J]. Cochrane Database Syst Rev, 2017, 6(6): CD003726.
50 Kopruszinski CM, Reis RC, Chichorro JG. B vitamins relieve neuropathic pain behaviors induced by infraorbital nerve constriction in rats[J]. Life Sci, 2012, 91(23/24): 1187-1195.
51 Deseure K, Hans GH. Differential drug effects on spontaneous and evoked pain behavior in a model of trigeminal neuropathic pain[J]. J Pain Res, 2017, 10: 279-286.
52 Zhang M, Hu M, Montera MA, et al. Sustained relief of trigeminal neuropathic pain by a blood-brain barrier penetrable PPAR gamma agonist[J]. Mol Pain, 2019, 15: 1744806919884498.
53 Nagakura Y, Nagaoka S, Kurose T. Potential mole-cular targets for treating neuropathic orofacial pain based on current findings in animal models[J]. Int J Mol Sci, 2021, 22(12): 6406.
54 Yang YJ, Hu L, Xia YP, et al. Resveratrol suppres-ses glial activation and alleviates trigeminal neuralgia via activation of AMPK[J]. J Neuroinflammation, 2016, 13(1): 84.
55 Michot B, Kayser V, Hamon M, et al. CGRP receptor blockade by MK-8825 alleviates allodynia in infraorbital nerve-ligated rats[J]. Eur J Pain, 2015, 19(2): 281-290.
56 Osteen JD, Herzig V, Gilchrist J, et al. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain[J]. Nature, 2016, 534(7608): 494-499.
57 Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway[J]. Nature, 1997, 389(6653): 816-824.
58 Li Q, Ma TL, Qiu YQ, et al. Connexin 36 mediates orofacial pain hypersensitivity through GluK2 and TRPA1[J]. Neurosci Bull, 2020, 36(12): 1484-1499.
59 Zhao JH, Lin King JV, Paulsen CE, et al. Irritant-evoked activation and calcium modulation of the TRPA1 receptor[J]. Nature, 2020, 585(7823): 141-145.
60 Lin King JV, Emrick JJ, Kelly MJS, et al. A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain[J]. Cell, 2019, 178(6): 1362-1374.e16.
61 Mika J, Osikowicz M, Rojewska E, et al. Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain[J]. Eur J Pharmacol, 2009, 623(1/2/3): 65-72.
62 Gao YJ, Ji RR. Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touch-evoked central sensitization and mechanical allodynia[J]. J Neurochem, 2010, 115(2): 505-514.
63 Ziccardi VB. Microsurgical techniques for repair of the inferior alveolar and lingual nerves[J]. Atlas Oral Maxillofac Surg Clin North Am, 2011, 19(1): 79-90.
64 Renton T, Yilmaz Z. Managing iatrogenic trigeminal nerve injury: a case series and review of the lite-rature[J]. Int J Oral Maxillofac Surg, 2012, 41(5): 629-637.
65 Habre-Hallage P, Dricot L, Jacobs R, et al. Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI[J]. Eur J Oral Implantol, 2012, 5(2): 175-190.
66 Henssen D, Kurt E, van Walsum AVC, et al. Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-ana-lysis[J]. Sci Rep, 2020, 10(1): 7195.
67 Yu FY, Li M, Wang QQ, et al. Spatiotemporal dynamics of brain function during the natural course in a dental pulp injury model[J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2716-2722.
68 Conti PCR, Bonjardim LR, Stuginski-Barbosa J, et al. Pain complications of oral implants: is that an issue[J]. J Oral Rehabil, 2021, 48(2): 195-206.
69 Pogrel MA, Jergensen R, Burgon E, et al. Long-term outcome of trigeminal nerve injuries related to dental treatment[J]. J Oral Maxillofac Surg, 2011, 69(9): 2284-2288.
[1] 廖洪林,方仲瀚,张艳艳,刘飞,沈颉飞. 牙种植术后三叉神经创伤性神经病理性疼痛的诊断与防治[J]. 国际口腔医学杂志, 2023, 50(6): 729-738.
[2] 朱可石,廖安琪,余优成. 机器学习在口腔种植学中的应用研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 491-498.
[3] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[4] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[5] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[6] 陈青娅, 黄茜, 王黎. 口腔种植患者牙科焦虑的调查分析[J]. 国际口腔医学杂志, 2018, 45(1): 14-19.
[7] 万双全, 邓飞龙. 上皮下结缔组织瓣在种植软组织缺陷中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 68-73.
[8] 王晓娜 赵静辉 储顺礼 周延民. 骨替代材料在口腔种植领域中的成骨效果[J]. 国际口腔医学杂志, 2016, 43(1): 113-.
[9] 雷文龙1 施斌1,2. 血小板衍生生长因子-BB在口腔种植领域中的作用[J]. 国际口腔医学杂志, 2014, 41(2): 199-203.
[10] 杨世茂1综述 王明国2审校. 富血小板纤维蛋白的研究进展[J]. 国际口腔医学杂志, 2012, 39(3): 373-375.
[11] 郭大伟1,2综述 梁星1 陈悦1审校. 发达国家口腔种植学的教育现状[J]. 国际口腔医学杂志, 2011, 38(3): 326-328.
[12] 张勇综述 李昀生审校. 应用牙槽窝保存技术减少拔牙后骨吸收的研究进展[J]. 国际口腔医学杂志, 2011, 38(3): 288-291.
[13] 聂莹综述 张志宏审校. 糖尿病对种植体周围骨组织的影响[J]. 国际口腔医学杂志, 2010, 37(4): 451-453.
[14] 邓振南,鲜苏琴. 富含血小板血浆与口腔种植骨再生[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[15] 廖大鹏综述 宫苹审校. 组织工程技术在口腔种植中的应用[J]. 国际口腔医学杂志, 2008, 35(4): 467-467~470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .