国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 516-521.doi: 10.7518/gjkq.2018.05.004
摘要:
种植牙因其舒适美观、稳固牢靠、不损伤邻牙等优点,受到人们的广泛关注。但由于缺乏天然牙那样相对完备的免疫防御系统,往往对细菌感染的抵抗力较弱。由此引发的种植体周围炎是导致种植失败的重要原因之一。为了降低种植体相关感染的发生率从而减少种植并发症,提高种植体本身的抗菌性成为目前研究的热点。本文针对近年来有关抗菌性口腔种植材料的研究作一综述,从材料组成、表面改性与抗菌涂层等方面归纳各方法的特点及抗菌效果,为抗菌性口腔种植材料的研究和临床应用提供参考。
中图分类号:
[1] |
Klinge B, Meyle J , Working Group 2. Peri-implant tissue destruction. The Third EAO Consensus Con-ference 2012[J]. Clin Oral Implants Res, 2012,23(Suppl 6):108-110.
doi: 10.1111/j.1600-0501.2012.02550.x pmid: 23062134 |
[2] |
De Giglio E, Cafagna D, Cometa S , et al. An innova-tive, easily fabricated, silver nanoparticle-based ti-tanium implant coating: development and analytical characterization[J]. Anal Bioanal Chem, 2013,405(2/3):805-816.
doi: 10.1007/s00216-012-6293-z |
[3] |
Al-Radha AS, Dymock D, Younes C , et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion[J]. J Dent, 2012,40(2):146-153.
doi: 10.1016/j.jdent.2011.12.006 |
[4] |
Roehling S, Astasov-Frauenhoffer M , Hauser-Ger-spach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017,88(3):298-307.
doi: 10.1902/jop.2016.160245 pmid: 27712464 |
[5] | Mei L, van der Mei HC, Ren YJ , et al. Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film[J]. Lan-gmuir, 2009,25(11):6227-6231. |
[6] |
Egawa M, Miura T, Kato T , et al. In vitro adherence of periodontopathic bacteria to zirconia and titanium surfaces[J]. Dent Mater J, 2013,32(1):101-106.
doi: 10.4012/dmj.2012-156 pmid: 23370877 |
[7] |
Lorenzetti M, Dogša I, Stošicki T , et al. The in-fluence of surface modification on bacterial adhesion to titanium-based substrates[J]. ACS Appl Mater Interfaces, 2015,7(3):1644-1651.
doi: 10.1021/am507148n pmid: 25543452 |
[8] |
Perera-Costa D, Bruque JM, González-Martín ML , et al. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns[J]. Langmuir, 2014,30(16):4633-4641.
doi: 10.1021/la5001057 |
[9] |
Zhang XX, Wang L, Levänen E , Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 2013,3(30):12003-12020.
doi: 10.1039/c3ra40497h |
[10] |
Pogodin S, Hasan J, Baulin VA , et al. Biophysical model of bacterial cell interactions with nanopat-terned cicada wing surfaces[J]. Biophys J, 2013,104(4):835-840.
doi: 10.1016/j.bpj.2012.12.046 pmid: 23442962 |
[11] |
Perni S, Prokopovich P , Micropatterning with conical features can control bacterial adhesion on silicone[J]. Soft Matter, 2013,9(6):1844-1851.
doi: 10.1039/c2sm26828k |
[12] |
Chebolu A, Laha B, Ghosh M , et al. Investigation on bacterial adhesion and colonisation resistance over laser-machined micro patterned surfaces[J]. Micro Nano Lett, 2013,8(6):280-283.
doi: 10.1049/mnl.2013.0109 |
[13] |
Scacchi M , The development of the ITI Dental Im-plant System. Part 1: a review of the literature[J]. Clin Oral Implants Res, 2000,11(Suppl 1):8-21.
doi: 10.1034/j.1600-0501.2000.011S1008.x |
[14] |
Dorkhan M, Hall J, Uvdal P , et al. Crystalline ana-tase-rich titanium can reduce adherence of oral Streptococci[J]. Biofouling, 2014,30(6):751-759.
doi: 10.1080/08927014.2014.922962 pmid: 24881929 |
[15] |
de Avila ED, Lima B, Sekiya T , et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material[J]. Biomaterials, 2015,67:84-92.
doi: 10.1016/j.biomaterials.2015.07.030 |
[16] |
Chan CW, Carson L, Smith GC , et al. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering[J]. Appl Surf Sci, 2017,404:67-81.
doi: 10.1016/j.apsusc.2017.01.233 |
[17] |
Krasowska A, Sigler K , How microorganisms use hydrophobicity and what does this mean for human needs[J]. Front Cell Infect Microbiol, 2014,4:112.
doi: 10.3389/fcimb.2014.00112 pmid: 4137226 |
[18] |
Kuehl R, Brunetto PS, Woischnig AK , et al. Preven-ting implant-associated infections by silver coating[J]. Antimicrob Agents Chemother, 2016,60(4):2467-2475.
doi: 10.1128/AAC.02934-15 pmid: 26883700 |
[19] |
Godoy-Gallardo M, Manzanares-Céspedes MC, Sevilla P , et al. Evaluation of bone loss in antibacterial coated dental implants: an experimental study in dogs[J]. Mater Sci Eng C Mater Biol Appl, 2016,69:538-545.
doi: 10.1016/j.msec.2016.07.020 pmid: 27612745 |
[20] |
Kvítek L, Panáček A, Soukupová J , et al. Effect of surfactants and polymers on stability and anti-bacterial activity of silver nanoparticles (NPs)[J]. J Phys Chem C, 2008,112(15):5825-5834.
doi: 10.1021/jp711616v |
[21] |
Memarzadeh K, Sharili AS, Huang J , et al. Nanopar-ticulate zinc oxide as a coating material for orthopedic and dental implants[J]. J Biomed Mater Res A, 2015,103(3):981-989.
doi: 10.1002/jbm.a.35241 pmid: 24862288 |
[22] |
Dybowska-Sarapuk Ł, Kotela A, Krzemiński J , et al. Graphene nanolayers as a new method for bacterial biofilm prevention: preliminary results[J]. J AOAC Int, 2017,100(4):900-904.
doi: 10.5740/jaoacint.17-0164 pmid: 28623661 |
[23] |
Godoy-Gallardo M, Guillem-Marti J, Sevilla P , et al. Anhydride-functional silane immobilized onto ti-tanium surfaces induces osteoblast cell differentia-tion and reduces bacterial adhesion and biofilm formation[J]. Mater Sci Eng C Mater Biol Appl, 2016,59:524-532.
doi: 10.1016/j.msec.2015.10.051 |
[24] | Gosau M, Haupt M, Thude S , et al. Antimicrobial effect and biocompatibility of novel metallic nano-crystalline implant coatings[J]. J Biomed Mater Res Part B Appl Biomater, 2016,104(8):1571-1579. |
[25] |
Ferraris S, Spriano S , Antibacterial titanium surfaces for medical implants[J]. Mater Sci Eng C Mater Biol Appl, 2016,61:965-978.
doi: 10.1016/j.msec.2015.12.062 pmid: 26838926 |
[26] |
He S, Zhou P, Wang LX , et al. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant[J]. J R Soc Interface, 2014,11(95):20140169.
doi: 10.1098/rsif.2014.0169 |
[27] |
Massa MA, Covarrubias C, Bittner M , et al. Synjournal of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles[J]. Mater Sci Eng C Mater Biol Appl, 2014,45:146-153.
doi: 10.1016/j.msec.2014.08.057 |
[28] |
Govindharajulu JP, Chen X, Li YP , et al. Chitosan-recombinamer layer-by-layer coatings for multifunc-tional implants[J]. Int J Mol Sci, 2017,18(2):369.
doi: 10.3390/ijms18020369 pmid: 5343904 |
[29] |
Lv HB, Chen Z, Yang XP , et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation[J]. J Dent, 2014,42(11):1464-1472.
doi: 10.1016/j.jdent.2014.06.003 |
[30] |
Costa EM, Silva S, Tavaria FK , et al. Study of the effects of chitosan upon Streptococcus mutans ad-herence and biofilm formation[J]. Anaerobe, 2013,20:27-31.
doi: 10.1016/j.anaerobe.2013.02.002 pmid: 23454497 |
[31] |
Junter GA, Thébault P, Lebrun L , Polysaccharide-based antibiofilm surfaces[J]. Acta Biomater, 2016,30:13-25.
doi: 10.1016/j.actbio.2015.11.010 pmid: 26555378 |
[32] |
Hoven VP, Tangpasuthadol V, Angkitpaiboon Y , et al. Surface-charged chitosan: preparation and protein adsorption[J]. Carbohydr Polym, 2007,68(1):44-53.
doi: 10.1016/j.carbpol.2006.07.008 |
[33] |
Münch D, Engels I, Müller A , et al. Structural variations of the cell wall precursor lipid Ⅱ and their influence on binding and activity of the lipoglycope-ptide antibiotic oritavancin[J]. Antimicrob Agents Chemother, 2015,59(2):772-781.
doi: 10.1128/AAC.02663-14 |
[34] |
Holmberg KV, Abdolhosseini M, Li YP , et al. Bio-inspired stable antimicrobial peptide coatings for dental applications[J]. Acta Biomater, 2013,9(9):8224-8231.
doi: 10.1016/j.actbio.2013.06.017 pmid: 3758876 |
[35] |
Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC , et al. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bac-terial adhesion and biofilm formation[J]. Acta Bio-mater, 2014,10(8):3522-3534.
doi: 10.1016/j.actbio.2014.03.026 |
[36] |
Kazemzadeh-Narbat M, Lai B, Ding CF , et al. Multi-layered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections[J]. Biomaterials, 2013,34(24):5969-5977.
doi: 10.1016/j.biomaterials.2013.04.036 |
[37] |
Chen X, Zhou XC, Liu S , et al. In vivo osseointe-gration of dental implants with an antimicrobial peptide coating[J]. J Mater Sci Mater Med, 2017,28(5):76.
doi: 10.1007/s10856-017-5885-8 |
[38] |
Kaplan JB , Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses[J]. J Dent Res, 2010,89(3):205-218.
doi: 10.1078/072320203322346137 pmid: 20139339 |
[1] | 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81. |
[2] | 韩冲,何东宁,余飞燕,吴东潮. 口腔种植术后疼痛机制及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 99-106. |
[3] | 朱可石,廖安琪,余优成. 机器学习在口腔种植学中的应用研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 491-498. |
[4] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632. |
[5] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[6] | 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340. |
[7] | 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444. |
[8] | 王蕊,盖阔,刘梦齐,蒋丽. 原子力显微镜在细菌黏附力学研究中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 687-692. |
[9] | 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170. |
[10] | 曾越, 夏海斌, 王敏. 纳米材料改良义齿基托力学性能及抗菌性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 455-458. |
[11] | 陈青娅, 黄茜, 王黎. 口腔种植患者牙科焦虑的调查分析[J]. 国际口腔医学杂志, 2018, 45(1): 14-19. |
[12] | 万双全, 邓飞龙. 上皮下结缔组织瓣在种植软组织缺陷中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 68-73. |
[13] | 盖阔, 郝丽英, 蒋丽. 应用原子力显微镜对口腔变异链球菌黏附机制的研究[J]. 国际口腔医学杂志, 2017, 44(3): 320-324. |
[14] | 郑赛男,蒋丽,李伟. 口腔细菌黏附机制的研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 223-227. |
[15] | 赵夫健,王臻石,石连水. 托槽表面抗菌改性的研究现状[J]. 国际口腔医学杂志, 2016, 43(2): 239-243. |
|