国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 516-521.doi: 10.7518/gjkq.2018.05.004

• 种植专栏 • 上一篇    下一篇

抗菌性口腔种植材料的研究进展

刘梦齐,盖阔,蒋丽()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院全科门诊 成都 610041
  • 收稿日期:2017-09-03 修回日期:2018-04-26 出版日期:2018-09-01 发布日期:2018-09-20
  • 通讯作者: 蒋丽
  • 作者简介:刘梦齐,学士,Email:1398978475@qq.com
  • 基金资助:
    国家自然科学基金(31200720);四川省科技计划项目(2016FZ0069)

Research progress on oral implant materials with antimicrobial properties

Mengqi Liu,Kuo Gai,Li Jiang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-09-03 Revised:2018-04-26 Online:2018-09-01 Published:2018-09-20
  • Contact: Li Jiang
  • Supported by:
    This study was supported by National Natural Science Foundation of China(31200720);Sichuan Science and Technology Program(2016FZ0069)

摘要:

种植牙因其舒适美观、稳固牢靠、不损伤邻牙等优点,受到人们的广泛关注。但由于缺乏天然牙那样相对完备的免疫防御系统,往往对细菌感染的抵抗力较弱。由此引发的种植体周围炎是导致种植失败的重要原因之一。为了降低种植体相关感染的发生率从而减少种植并发症,提高种植体本身的抗菌性成为目前研究的热点。本文针对近年来有关抗菌性口腔种植材料的研究作一综述,从材料组成、表面改性与抗菌涂层等方面归纳各方法的特点及抗菌效果,为抗菌性口腔种植材料的研究和临床应用提供参考。

关键词: 口腔种植, 抗菌性, 细菌黏附, 材料组成, 表面改性, 抗菌涂层

Abstract:

Dental implants have attracted widespread attention because of their many advantages, which include comfort, beauty, stability, reliability, and no damage to adjacent teeth. However, unlike natural teeth, dental implants usually present weak resistance to bacterial infection due to their lack of a complete immune defense system. Peri-implantitis is one of the major causes of implant failure. To decrease the incidence of oral implant-related infection and complications, enhancing the antibacterial properties of the implants is important. This paper reviews the research status of dental implant materials with antibacterial properties. It summarizes the characteristics and antibacterial effects of various methods from the aspects of material composition, surface modification, and antibacterial coating. This work seeks to provide a reference for future research and the clinical applications of oral implant materials with antibacterial properties.

Key words: dental implant, antibacterial property, bacterial adhesion, material composition, surface modification, antibacterial coating

中图分类号: 

  • R783.1
[1] Klinge B, Meyle J , Working Group 2. Peri-implant tissue destruction. The Third EAO Consensus Con-ference 2012[J]. Clin Oral Implants Res, 2012,23(Suppl 6):108-110.
doi: 10.1111/j.1600-0501.2012.02550.x pmid: 23062134
[2] De Giglio E, Cafagna D, Cometa S , et al. An innova-tive, easily fabricated, silver nanoparticle-based ti-tanium implant coating: development and analytical characterization[J]. Anal Bioanal Chem, 2013,405(2/3):805-816.
doi: 10.1007/s00216-012-6293-z
[3] Al-Radha AS, Dymock D, Younes C , et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion[J]. J Dent, 2012,40(2):146-153.
doi: 10.1016/j.jdent.2011.12.006
[4] Roehling S, Astasov-Frauenhoffer M , Hauser-Ger-spach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017,88(3):298-307.
doi: 10.1902/jop.2016.160245 pmid: 27712464
[5] Mei L, van der Mei HC, Ren YJ , et al. Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film[J]. Lan-gmuir, 2009,25(11):6227-6231.
[6] Egawa M, Miura T, Kato T , et al. In vitro adherence of periodontopathic bacteria to zirconia and titanium surfaces[J]. Dent Mater J, 2013,32(1):101-106.
doi: 10.4012/dmj.2012-156 pmid: 23370877
[7] Lorenzetti M, Dogša I, Stošicki T , et al. The in-fluence of surface modification on bacterial adhesion to titanium-based substrates[J]. ACS Appl Mater Interfaces, 2015,7(3):1644-1651.
doi: 10.1021/am507148n pmid: 25543452
[8] Perera-Costa D, Bruque JM, González-Martín ML , et al. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns[J]. Langmuir, 2014,30(16):4633-4641.
doi: 10.1021/la5001057
[9] Zhang XX, Wang L, Levänen E , Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 2013,3(30):12003-12020.
doi: 10.1039/c3ra40497h
[10] Pogodin S, Hasan J, Baulin VA , et al. Biophysical model of bacterial cell interactions with nanopat-terned cicada wing surfaces[J]. Biophys J, 2013,104(4):835-840.
doi: 10.1016/j.bpj.2012.12.046 pmid: 23442962
[11] Perni S, Prokopovich P , Micropatterning with conical features can control bacterial adhesion on silicone[J]. Soft Matter, 2013,9(6):1844-1851.
doi: 10.1039/c2sm26828k
[12] Chebolu A, Laha B, Ghosh M , et al. Investigation on bacterial adhesion and colonisation resistance over laser-machined micro patterned surfaces[J]. Micro Nano Lett, 2013,8(6):280-283.
doi: 10.1049/mnl.2013.0109
[13] Scacchi M , The development of the ITI Dental Im-plant System. Part 1: a review of the literature[J]. Clin Oral Implants Res, 2000,11(Suppl 1):8-21.
doi: 10.1034/j.1600-0501.2000.011S1008.x
[14] Dorkhan M, Hall J, Uvdal P , et al. Crystalline ana-tase-rich titanium can reduce adherence of oral Streptococci[J]. Biofouling, 2014,30(6):751-759.
doi: 10.1080/08927014.2014.922962 pmid: 24881929
[15] de Avila ED, Lima B, Sekiya T , et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material[J]. Biomaterials, 2015,67:84-92.
doi: 10.1016/j.biomaterials.2015.07.030
[16] Chan CW, Carson L, Smith GC , et al. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering[J]. Appl Surf Sci, 2017,404:67-81.
doi: 10.1016/j.apsusc.2017.01.233
[17] Krasowska A, Sigler K , How microorganisms use hydrophobicity and what does this mean for human needs[J]. Front Cell Infect Microbiol, 2014,4:112.
doi: 10.3389/fcimb.2014.00112 pmid: 4137226
[18] Kuehl R, Brunetto PS, Woischnig AK , et al. Preven-ting implant-associated infections by silver coating[J]. Antimicrob Agents Chemother, 2016,60(4):2467-2475.
doi: 10.1128/AAC.02934-15 pmid: 26883700
[19] Godoy-Gallardo M, Manzanares-Céspedes MC, Sevilla P , et al. Evaluation of bone loss in antibacterial coated dental implants: an experimental study in dogs[J]. Mater Sci Eng C Mater Biol Appl, 2016,69:538-545.
doi: 10.1016/j.msec.2016.07.020 pmid: 27612745
[20] Kvítek L, Panáček A, Soukupová J , et al. Effect of surfactants and polymers on stability and anti-bacterial activity of silver nanoparticles (NPs)[J]. J Phys Chem C, 2008,112(15):5825-5834.
doi: 10.1021/jp711616v
[21] Memarzadeh K, Sharili AS, Huang J , et al. Nanopar-ticulate zinc oxide as a coating material for orthopedic and dental implants[J]. J Biomed Mater Res A, 2015,103(3):981-989.
doi: 10.1002/jbm.a.35241 pmid: 24862288
[22] Dybowska-Sarapuk Ł, Kotela A, Krzemiński J , et al. Graphene nanolayers as a new method for bacterial biofilm prevention: preliminary results[J]. J AOAC Int, 2017,100(4):900-904.
doi: 10.5740/jaoacint.17-0164 pmid: 28623661
[23] Godoy-Gallardo M, Guillem-Marti J, Sevilla P , et al. Anhydride-functional silane immobilized onto ti-tanium surfaces induces osteoblast cell differentia-tion and reduces bacterial adhesion and biofilm formation[J]. Mater Sci Eng C Mater Biol Appl, 2016,59:524-532.
doi: 10.1016/j.msec.2015.10.051
[24] Gosau M, Haupt M, Thude S , et al. Antimicrobial effect and biocompatibility of novel metallic nano-crystalline implant coatings[J]. J Biomed Mater Res Part B Appl Biomater, 2016,104(8):1571-1579.
[25] Ferraris S, Spriano S , Antibacterial titanium surfaces for medical implants[J]. Mater Sci Eng C Mater Biol Appl, 2016,61:965-978.
doi: 10.1016/j.msec.2015.12.062 pmid: 26838926
[26] He S, Zhou P, Wang LX , et al. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant[J]. J R Soc Interface, 2014,11(95):20140169.
doi: 10.1098/rsif.2014.0169
[27] Massa MA, Covarrubias C, Bittner M , et al. Synjournal of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles[J]. Mater Sci Eng C Mater Biol Appl, 2014,45:146-153.
doi: 10.1016/j.msec.2014.08.057
[28] Govindharajulu JP, Chen X, Li YP , et al. Chitosan-recombinamer layer-by-layer coatings for multifunc-tional implants[J]. Int J Mol Sci, 2017,18(2):369.
doi: 10.3390/ijms18020369 pmid: 5343904
[29] Lv HB, Chen Z, Yang XP , et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation[J]. J Dent, 2014,42(11):1464-1472.
doi: 10.1016/j.jdent.2014.06.003
[30] Costa EM, Silva S, Tavaria FK , et al. Study of the effects of chitosan upon Streptococcus mutans ad-herence and biofilm formation[J]. Anaerobe, 2013,20:27-31.
doi: 10.1016/j.anaerobe.2013.02.002 pmid: 23454497
[31] Junter GA, Thébault P, Lebrun L , Polysaccharide-based antibiofilm surfaces[J]. Acta Biomater, 2016,30:13-25.
doi: 10.1016/j.actbio.2015.11.010 pmid: 26555378
[32] Hoven VP, Tangpasuthadol V, Angkitpaiboon Y , et al. Surface-charged chitosan: preparation and protein adsorption[J]. Carbohydr Polym, 2007,68(1):44-53.
doi: 10.1016/j.carbpol.2006.07.008
[33] Münch D, Engels I, Müller A , et al. Structural variations of the cell wall precursor lipid Ⅱ and their influence on binding and activity of the lipoglycope-ptide antibiotic oritavancin[J]. Antimicrob Agents Chemother, 2015,59(2):772-781.
doi: 10.1128/AAC.02663-14
[34] Holmberg KV, Abdolhosseini M, Li YP , et al. Bio-inspired stable antimicrobial peptide coatings for dental applications[J]. Acta Biomater, 2013,9(9):8224-8231.
doi: 10.1016/j.actbio.2013.06.017 pmid: 3758876
[35] Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC , et al. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bac-terial adhesion and biofilm formation[J]. Acta Bio-mater, 2014,10(8):3522-3534.
doi: 10.1016/j.actbio.2014.03.026
[36] Kazemzadeh-Narbat M, Lai B, Ding CF , et al. Multi-layered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections[J]. Biomaterials, 2013,34(24):5969-5977.
doi: 10.1016/j.biomaterials.2013.04.036
[37] Chen X, Zhou XC, Liu S , et al. In vivo osseointe-gration of dental implants with an antimicrobial peptide coating[J]. J Mater Sci Mater Med, 2017,28(5):76.
doi: 10.1007/s10856-017-5885-8
[38] Kaplan JB , Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses[J]. J Dent Res, 2010,89(3):205-218.
doi: 10.1078/072320203322346137 pmid: 20139339
[1] 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81.
[2] 韩冲,何东宁,余飞燕,吴东潮. 口腔种植术后疼痛机制及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 99-106.
[3] 朱可石,廖安琪,余优成. 机器学习在口腔种植学中的应用研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 491-498.
[4] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[5] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[6] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[7] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[8] 王蕊,盖阔,刘梦齐,蒋丽. 原子力显微镜在细菌黏附力学研究中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 687-692.
[9] 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170.
[10] 曾越, 夏海斌, 王敏. 纳米材料改良义齿基托力学性能及抗菌性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 455-458.
[11] 陈青娅, 黄茜, 王黎. 口腔种植患者牙科焦虑的调查分析[J]. 国际口腔医学杂志, 2018, 45(1): 14-19.
[12] 万双全, 邓飞龙. 上皮下结缔组织瓣在种植软组织缺陷中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 68-73.
[13] 盖阔, 郝丽英, 蒋丽. 应用原子力显微镜对口腔变异链球菌黏附机制的研究[J]. 国际口腔医学杂志, 2017, 44(3): 320-324.
[14] 郑赛男,蒋丽,李伟. 口腔细菌黏附机制的研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 223-227.
[15] 赵夫健,王臻石,石连水. 托槽表面抗菌改性的研究现状[J]. 国际口腔医学杂志, 2016, 43(2): 239-243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .