国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (4): 439-444.doi: 10.7518/gjkq.2020037

• 综述 • 上一篇    下一篇

微弧氧化技术制备钛基种植体表面涂层的研究进展

王欢1,刘洋1,戚孟春1(),李静怡1,刘梦楠1,孙红2   

  1. 1.华北理工大学口腔医学院 唐山 063210
    2.华北理工大学基础医学院 唐山 063210
  • 收稿日期:2019-11-29 修回日期:2020-04-12 出版日期:2020-07-01 发布日期:2020-07-10
  • 通讯作者: 戚孟春
  • 作者简介:王欢,硕士,Email:1106565973@qq.com
  • 基金资助:
    河北省高等学校科学技术研究重点项目(ZD2015005)

Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation

Wang Huan1,Liu Yang1,Qi Mengchun1(),Li Jingyi1,Liu Mengnan1,Sun Hong2   

  1. 1. College of Stomatology, North China University of Science and Technology, Tangshan 063210, China
    2. College of Basic Medicine, North China University of Science and Technology, Tangshan 063210, China
  • Received:2019-11-29 Revised:2020-04-12 Online:2020-07-01 Published:2020-07-10
  • Contact: Mengchun Qi
  • Supported by:
    This study was supported by Key Scientific and Technological Research Projects of Colleges and Universities in Hebei Province(ZD2015005)

摘要:

钛及其合金因优越的机械性能以及生物相容性,被广泛作为牙科种植体、整形外科骨组织修复替代材料等。但因其表面生物惰性,需要进行表面改性以提高成骨性和抗菌性。在众多表面改性技术中,微弧氧化技术因能方便、有效地对种植体表面进行元素掺杂和形貌改性,能极大地提高钛基种植体的生物学性能,逐渐成为热门的种植体表面改性技术。众多学者研究发现,可以通过调整微弧氧化反应的参数以及联合其他表面改性技术,在钛基种植体表面制备具有不同形貌和化学成分的TiO2涂层,提高种植体的成骨性和抗菌性,提高种植成功率。本文针对使用微弧氧化技术制备钛基种植体表面涂层及其成骨性和抗菌性的研究进展进行综述。

关键词: 微弧氧化, 种植体, TiO2涂层, 表面改性, 成骨性, 抗菌性

Abstract:

Titanium and its alloys are widely used as alternative materials for dental implants and bone tissue repair in orthopaedic surgery due to their superior mechanical properties and biocompatibility. However, the surface of these materials is biologically inert and needs to be modified to improve their osteogenic and antibacterial properties. Micro-arc oxidation (MAO) has become a popular surface modification technology because it can conveniently and effectively modify the surface of implants by element doping and morphology. This method can greatly improve the biological properties of titanium-based implants. TiO2 coatings with different morphologies and chemical compositions can be prepared on the surface of titanium-based implants by adjusting the reaction parameters of MAO and combining with other surface modification techniques. This strategy can improve the osteogenic and antibacterial properties of implants and increase the planting success rate. In this paper, the surface coatings of titanium implants prepared by MAO and their osteogenic and antibacterial properties will be reviewed.

Key words: micro-arc oxidation, implant, TiO2 coating, surface modification, osteogenic property, antibacterial property

中图分类号: 

  • R783.1
[1] Zhao QM, Yi L, Jiang LB, et al. Surface functiona-lization of titanium with zinc/strontium-doped ti-tanium dioxide microporous coating via microarc oxidation[J]. Nanomed-Nanotechnol Biol Med, 2019,16:149-161.
[2] Sandeep Kranthi Kiran A, Sireesha M, Ramalingam R, et al. Modulation of biological properties by grain refinement and surface modification on titanium sur- faces for implant-related infections[J]. J Mater Sci, 2019,54(20):13265-13282.
[3] Nyan M, Hao J, Miyahara T, et al. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces[J]. Clin Implant Dent Relat Res, 2014,16(5):675-683.
doi: 10.1111/cid.12045 pmid: 23399109
[4] Zhou R, Wei DQ, Yang HY, et al. MC3T3-E1 cell response of amorphous phase/TiO2 nanocrystal com-posite coating prepared by microarc oxidation on titanium[J]. Mater Sci Eng C Mater Biol Appl, 2014,39:186-195.
doi: 10.1016/j.msec.2014.03.006 pmid: 24863215
[5] Song WH, Jun YK, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania[J]. Biomaterials, 2004,25(17):3341-3349.
doi: 10.1016/j.biomaterials.2003.09.103 pmid: 15020106
[6] Xu L, Wu C, Lei XC, et al. Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment[J]. Surf Coat Technol, 2018,342:12-22.
[7] Guo HF, An MZ, Huo HB, et al. Microstructure cha-racteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions[J]. Appl Surf Sci, 2006,252(22):7911-7916.
[8] Babaei M, Dehghanian C, Taheri P, et al. Effect of duty cycle and electrolyte additive on photocatalytic performance of TiO2-ZrO2 composite layers prepared on CP Ti by micro arc oxidation method[J]. Surf Coat Technol, 2016,307:554-564.
[9] Yang W, Xu DP, Guo QQ, et al. Influence of electro-lyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation[J]. Surf Coat Technol, 2018,349:522-528.
[10] Li GL, Cao HL, Zhang WJ, et al. Enhanced osseoin-tegration of hierarchical micro/nanotopographic ti-tanium fabricated by microarc oxidation and electro-chemical treatment[J]. ACS Appl Mater Interfaces, 2016,8(6):3840-3852.
doi: 10.1021/acsami.5b10633 pmid: 26789077
[11] Rupp F, Scheideler L, Olshanska N, et al. Enhancing surface free energy and hydrophilicity through che-mical modification of microstructured titanium im-plant surfaces[J]. J Biomed Mater Res A, 2006,76(2):323-334.
doi: 10.1002/jbm.a.30518 pmid: 16270344
[12] Qiao SC, Cao HL, Zhao X, et al. Ag-plasma modi-fication enhances bone apposition around titanium dental implants: an animal study in Labrador dogs[J]. Int J Nanomedicine, 2015,10:653-664.
doi: 10.2147/IJN.S73467 pmid: 25609967
[13] Xu L, Zhang K, Wu C, et al. Micro-arc oxidation enhances the blood compatibility of ultrafine-grained pure titanium[J]. Materials (Basel), 2017,10(12):E1446.
[14] Zhou WC, Huang O, Gan YZ, et al. Effect of ti-tanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs[J]. Artif Cells Nanomed Biotechnol, 2019,47(1):290-299.
doi: 10.1080/21691401.2018.1553784 pmid: 30688103
[15] Zhang WJ, Wang GC, Liu Y, et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration[J]. Biomaterials, 2013,34(13):3184-3195.
doi: 10.1016/j.biomaterials.2013.01.008 pmid: 23380352
[16] Zhang RR, Elkhooly TA, Huang QL, et al. Effects of the hierarchical macro/mesoporous structure on the osteoblast-like cell response[J]. J Biomed Mater Res A, 2018,106(7):1896-1902.
[17] Zhou HZ, Li YD, Liu L, et al. Early osseointegration of implants with cortex-like TiO2 coatings formed by micro-arc oxidation: a histomorphometric study in rabbits[J]. J Huazhong Univ Sci Technolog Med Sci, 2017,37(1):122-130.
doi: 10.1007/s11596-017-1705-0 pmid: 28224420
[18] Li YD, Wang WQ, Liu HY, et al. Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation[J]. Mater Sci Eng C Mater Biol Appl, 2018,87:90-103.
doi: 10.1016/j.msec.2018.02.023 pmid: 29549953
[19] Surmenev RA, Surmeneva MA, Ivanova AA. Signi-ficance of calcium phosphate coatings for the en-hancement of new bone osteogenesis: a review[J]. Acta Biomater, 2014,10(2):557-579.
doi: 10.1016/j.actbio.2013.10.036 pmid: 24211734
[20] Pilmane M, Salma-Ancane K, Loca D, et al. Strontium and strontium ranelate: historical review of some of their functions[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:1222-1230.
doi: 10.1016/j.msec.2017.05.042 pmid: 28575961
[21] Sangeetha K, Ashok M, Girija EK, et al. Strontium and ciprofloxacin modified hydroxyapatites as functional grafts for bone prostheses[J]. Ceram Int, 2018,44(12):13782-13789.
[22] Yan J, Sun JF, Chu PK, et al. Bone integration capa-bility of a series of strontium-containing hydroxya-patite coatings formed by micro-arc oxidation[J]. J Biomed Mater Res A, 2013,101(9):2465-2480.
doi: 10.1002/jbm.a.34548 pmid: 23348908
[23] Sato M, Chen P, Tsutsumi Y, et al. Effect of stron-tium ions on calcification of preosteoblasts cultured on porous calcium- and phosphate-containing titanium oxide layers formed by micro-arc oxidation[J]. Dent Mater J, 2016,35(4):627-634.
doi: 10.4012/dmj.2016-032 pmid: 27477229
[24] Qin S, Xu KH, Nie BN, et al. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity[J]. J Biomed Mater Res A, 2018,106(9):2531-2539.
doi: 10.1002/jbm.a.36413 pmid: 29603857
[25] Song WH, Ryu HS, Hong SH. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation[J]. J Biomed Mater Res A, 2009,88(1):246-254.
doi: 10.1002/jbm.a.31877 pmid: 18286618
[26] Goudouri OM, Kontonasaki E, Lohbauer U, et al. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy[J]. Acta Biomater, 2014,10(8):3795-3810.
doi: 10.1016/j.actbio.2014.03.028 pmid: 24704700
[27] Chai HW, Guo L, Wang XT, et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo[J]. J Mater Sci Mater Med, 2011,22(11):2525-2535.
doi: 10.1007/s10856-011-4427-z pmid: 21870079
[28] Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications[J]. Nanomed-Nanotechnol Biol Med, 2011,7(1):22-39.
doi: 10.1016/j.nano.2010.10.005
[29] Wu HB, Zhang XY, Geng ZH, et al. Preparation, anti-bacterial effects and corrosion resistant of porous Cu-TiO2 coatings[J]. Appl Surf Sci, 308:43-49.
[30] Huang QL, Li XZ, Elkhooly TA, et al. The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium sub-strates[J]. Colloids Surf B Biointerfaces, 2018,170:242-250.
doi: 10.1016/j.colsurfb.2018.06.020 pmid: 29933233
[31] Zhang EL, Li FB, Wang HY, et al. A new antibac-terial titanium-copper sintered alloy: preparation and antibacterial property[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(7):4280-4287.
doi: 10.1016/j.msec.2013.06.016 pmid: 23910344
[32] Yao XH, Zhang XY, Wu HB, et al. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation[J]. Appl Surf Sci, 2014,292:944-947.
doi: 10.1016/j.apsusc.2013.12.083
[33] Nriagu J. Zinc deficiency in human health//Nriagu J ed. Encyclopedia of environmental health[M]. Amsterdam: Elsevier, 2011: 789-800.
[34] Yu JM, Xu LZ, Li K, et al. Zinc-modified calcium silicate coatings promote osteogenic differentiation through TGF-β/Smad pathway and osseointegration in osteopenic rabbits[J]. Sci Rep, 2017,7(1):3440.
doi: 10.1038/s41598-017-03661-5 pmid: 28611362
[35] Rokosz K, Hryniewicz T, Gaiaschi S, et al. Novel porous phosphorus-calcium-magnesium coatings on titanium with copper or zinc obtained by DC plasma electrolytic oxidation: fabrication and characteriza-tion[J]. Materials (Basel), 2018,11(9):E1680.
[36] Li M, Li D, Qu L, et al. Study on Ag bio-coatings on titanium alloy by ultrasonic auxiliary micro-arc oxi-dation [C]//Proceedings of 2011 6th International Forum on Strategic Technology, Harbin, 2011. IEEE, 2011. doi: 10.1109/ifost.2011.6021002.
[37] Lee JL, Kuo KN, Sung TL, et al. Preparation of antibacterial ceramic coatings containing Ag on titanium alloy by use of microarc oxidation[J]. IEEE Trans Plasma Sci, 2016,44(12):3179-3182.
[38] He XJ, Zhang XY, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings[J]. Biomed Mater, 2016,11(4):045008.
doi: 10.1088/1748-6041/11/4/045008 pmid: 27508428
[39] Liu GG, Zhao GX, Zhou W, et al. In situ bond modu-lation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Adv Funct Mater, 2016,26(37):6822-6829.
[1] 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81.
[2] 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 龚佳明,赵瑞敏,潘宏伟,郎鑫,余占海,李健学. 动态导航与静态导航对种植体准确性的Meta分析[J]. 国际口腔医学杂志, 2023, 50(5): 538-551.
[5] 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158.
[6] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[7] 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11.
[8] 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380-384.
[9] 路泊遥,杨大维,刘蔚晴,梁星. 超短种植体临床应用效果的影响因素[J]. 国际口腔医学杂志, 2021, 48(3): 329-328.
[10] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[11] 郑桂婷,徐燕,吴明月. 种植体周围疾病治疗的专家共识及治疗方法的进展[J]. 国际口腔医学杂志, 2020, 47(6): 725-731.
[12] 童子安,姒蜜思. 种植体表面菌斑去污方式的体外研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 589-594.
[13] 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470.
[14] 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477.
[15] 田青鹭,赵志河. 微型种植体在口腔正畸中稳定性的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 212-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .