国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (5): 589-594.doi: 10.7518/gjkq.2020098

• 综述 • 上一篇    下一篇

种植体表面菌斑去污方式的体外研究进展

童子安(),姒蜜思()   

  1. 浙江大学医学院附属口腔医院种植科 浙江省口腔生物医学研究重点实验室 杭州 310006
  • 收稿日期:2020-01-10 修回日期:2020-05-30 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 姒蜜思
  • 作者简介:童子安,住院医师,硕士,Email: tongzian@zju.edu.cn
  • 基金资助:
    国家自然科学基金(81401774)

Advances in the decontamination of plaque on implant surface in vitro

Tong Zian(),Si Misi()   

  1. Dept. of Oral Implantology, Stomatological Hospital Affiliated to School of Medicine, Zhejiang University, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
  • Received:2020-01-10 Revised:2020-05-30 Online:2020-09-01 Published:2020-09-16
  • Contact: Misi Si
  • Supported by:
    National Natural Science Foundation of China(81401774)

摘要:

种植体周围炎是指发生在植体周与菌斑相关的病理状态,以植体周黏膜炎症和进行性支持骨组织丧失为特征,已成为引起种植失败的主要原因之一。种植体表面去污是治疗该疾病的关键。目前研究的去污手段包括手工刮治、超声洁治、常压等离子体、激光、空气喷砂等物理方法,以及生理盐水、双氧水、氯己定、枸橼酸、光动力疗法等化学药物方法。物理方法侧重于对异物的清除作用,而化学方法则主要起到杀灭微生物的作用。在实际临床工作中,通常联用物理和化学去污手段以实现疗效的最大化。本文就目前关于种植体表面菌斑去污方式的体外研究进展作一综述。

关键词: 种植体周围炎, 菌斑, 体外研究, 去污

Abstract:

Peri-implantitis is a plaque-associated pathological condition that occurs in the tissues around dental implants. This condition is characterized by inflammation in the peri-implant mucosa and the subsequent progressive loss of supporting bone; thus, this disease leads to the failure of dental implants. Surface decontamination is a critical process in the treatment of this disease. Current debridement methods include physical and chemical decontamination methods, such as manual scraping, ultrasonic scaling, atmospheric pressure plasma, laser, air polishing, normal saline, hydrogen peroxide, chlorhexidine, citric acid, and photodynamic therapies. Physical methods focus on removing foreign bodies, whereas chemical methods are used to kill microorganisms. These decontamination methods are often combined in practical clinical practice to maximize their efficacy. This review summarizes the current in vitro studies on the decontamination of plaque on implant surface.

Key words: peri-implantitis, plaque, in vitro study, decontamination

中图分类号: 

  • R783.4
[1] Lee CT, Huang YW, Zhu L, et al. Prevalences of peri-implantitis and peri-implant mucositis: syste-matic review and Meta-analysis[J]. J Dent, 2017,62:1-12.
doi: 10.1016/j.jdent.2017.04.011 pmid: 28478213
[2] 李维婷, 朴牧子, 李慧, 等. 种植体周围疾病发病率及危险因素的研究[J]. 口腔医学研究, 2017,33(7):758-761.
Li WT, Pu MZ, Li H , et al. Study on prevalence and risk indicators for peri-implant disease[J]. J Oral Sci Res, 2017,33(7):758-761.
[3] Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-im-plant diseases and conditions-Introduction and key changes from the 1999 classification[J]. J Clin Perio-dontol, 2018,45(Suppl 20):S1-S8.
[4] Sanz-Martin I, Doolittle-Hall J, Teles RP, et al. Ex-ploring the microbiome of healthy and diseased peri-implant sites using illumina sequencing[J]. J Clin Periodontol, 2017,44(12):1274-1284.
doi: 10.1111/jcpe.12788 pmid: 28766745
[5] Mombelli A, Décaillet F. The characteristics of bio-films in peri-implant disease[J]. J Clin Periodontol, 2011,38(Suppl 11):203-213.
doi: 10.1111/jcpe.2011.38.issue-s11
[6] Renvert S, Aghazadeh A, Hallström H, et al. Factors related to peri-implantitis—a retrospective study[J]. Clin Oral Implants Res, 2014,25(4):522-529.
doi: 10.1111/clr.12208 pmid: 23772670
[7] Renvert S, Quirynen M. Risk indicators for peri-implantitis. A narrative review[J]. Clin Oral Implants Res, 2015,26(Suppl 11):15-44.
[8] Dalago HR, Schuldt Filho G, Rodrigues MA, et al. Risk indicators for peri-implantitis. A cross-sectional study with 916 implants[J]. Clin Oral Implants Res, 2017,28(2):144-150.
doi: 10.1111/clr.12772 pmid: 26754342
[9] Rodrigo D, Sanz-Sánchez I, Figuero E, et al. Preva-lence and risk indicators of peri-implant diseases in Spain[J]. J Clin Periodontol, 2018,45(12):1510-1520.
doi: 10.1111/jcpe.13017 pmid: 30289569
[10] Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects[J]. Clin Implant Dent Relat Res, 2012,14(2):170-183.
doi: 10.1111/j.1708-8208.2009.00244.x pmid: 19843108
[11] Canullo L, Genova T, Wang HL, et al. Plasma of argon increases cell attachment and bacterial decon-tamination on different implant surfaces[J]. Int J Oral Maxillofac Implants, 2017,32(6):1315-1323.
doi: 10.11607/jomi.5777 pmid: 29140375
[12] Idlibi AN, Al-Marrawi F, Hannig M, et al. Destruc-tion of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma[J]. Biofouling, 2013,29(4):369-379.
[13] Rupf S, Idlibi AN, Marrawi FA, et al. Removing bio- films from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology[J]. PLoS One, 2011,6(10):e25893.
doi: 10.1371/journal.pone.0025893 pmid: 22016784
[14] Schwarz F, Nuesry E, Bieling K, et al. Influence of an erbium, chromium-doped yttrium, scandium, gal-lium, and garnet (Er, Cr: YSGG) laser on the reestab-lishment of the biocompatibility of contaminated titanium implant surfaces[J]. J Periodontol, 2006,77(11):1820-1827.
doi: 10.1902/jop.2006.050456 pmid: 17076606
[15] Strever JM, Lee J, Ealick W, et al. Erbium, chromium: yttrium-scandium-gallium-garnet laser effectively ablates single-species biofilms on titanium disks without detectable surface damage[J]. J Periodontol, 2017,88(5):484-492.
[16] Al-Hashedi AA, Laurenti M, Benhamou V, et al. Decontamination of titanium implants using physical methods[J]. Clin Oral Implants Res, 2017,28(8):1013-1021.
doi: 10.1111/clr.12914 pmid: 27392811
[17] Kreisler M, Kohnen W, Christoffers AB, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system[J]. Clin Oral Implants Res, 2005,16(1):36-43.
doi: 10.1111/j.1600-0501.2004.01056.x pmid: 15642029
[18] Giannelli M, Landini G, Materassi F, et al. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study[J]. Lasers Med Sci, 2016,31(8):1613-1619.
doi: 10.1007/s10103-016-2025-5 pmid: 27475996
[19] Hauser-Gerspach I, Mauth C, Waltimo T, et al. Effects of Er: YAG laser on bacteria associated with titanium surfaces and cellular response in vitro[J]. Lasers Med Sci, 2014,29(4):1329-1337.
[20] Eick S, Meier I, Spoerlé F, et al. In vitro-activity of Er: YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces[J]. PLoS One, 2017,12(1):e0171086.
doi: 10.1371/journal.pone.0171086 pmid: 28125700
[21] Ayubianmarkazi N, Karimi M, Koohkan S, et al. An in vitro evaluation of the responses of human osteo-blast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO2 lasers[J]. Lasers Med Sci, 2015,30(8):2129-2134.
doi: 10.1007/s10103-015-1756-z pmid: 25958169
[22] Ayobian-Markazi N, Fourootan T, Zahmatkesh A. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium: yttrium-aluminum-garnet (Er: YAG) lasers[J]. Lasers Med Sci, 2014,29(1):47-53.
[23] Momber A. Blast cleaning technology[M]. Heidelberg: Springer-Verlag, 2008.
[24] Conserva E, Pisciotta A, Bertoni L, et al. Evaluation of biological response of STRO-1/c-kit enriched human dental pulp stem cells to titanium surfaces treated with two different cleaning systems[J]. Int J Mol Sci, 2019,20(8):E1868.
doi: 10.3390/ijms20081868 pmid: 31014017
[25] Drago L, Del Fabbro M, Bortolin M, et al. Biofilm removal and antimicrobial activity of two different air-polishing powders: an in vitro study[J]. J Perio-dontol, 2014,85(11):e363-e369.
[26] Drago L, Bortolin M, Taschieri S, et al. Erythritol/chlorhexidine combination reduces microbial biofilm and prevents its formation on titanium surfaces in vitro[J]. J Oral Pathol Med, 2017,46(8):625-631.
doi: 10.1111/jop.12536 pmid: 27935124
[27] Matthes R, Duske K, Kebede TG, et al. Osteoblast growth, after cleaning of biofilm-covered titanium discs with air-polishing and cold plasma[J]. J Clin Periodontol, 2017,44(6):672-680.
doi: 10.1111/jcpe.12720 pmid: 28303583
[28] Petersilka GJ. Subgingival air-polishing in the treatment of periodontal biofilm infections[J]. Periodontol 2000, 2011,55(1):124-142.
pmid: 21134232
[29] Moharrami M, Perrotti V, Iaculli F, et al. Effects of air abrasive decontamination on titanium surfaces: a systematic review of in vitro studies[J]. Clin Implant Dent Relat Res, 2019,21(2):398-421.
doi: 10.1111/cid.12747 pmid: 30838790
[30] Gosau M, Hahnel S, Schwarz F, et al. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm[J]. Clin Oral Implants Res, 2010,21(8):866-872.
pmid: 20666798
[31] Charalampakis G, Ramberg P, Dahlén G, et al. Effect of cleansing of biofilm formed on titanium discs[J]. Clin Oral Implants Res, 2015,26(8):931-936.
doi: 10.1111/clr.12397 pmid: 24734854
[32] Kotsakis GA, Lan CX, Barbosa J, et al. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces[J]. J Periodontol, 2016,87(7):809-819.
doi: 10.1902/jop.2016.150684 pmid: 26923474
[33] Dostie S, Alkadi LT, Owen G, et al. Chemotherapeutic decontamination of dental implants colonized by ma-ture multispecies oral biofilm[J]. J Clin Periodontol, 2017,44(4):403-409.
doi: 10.1111/jcpe.12699 pmid: 28117914
[34] Maquera-Huacho PM, Tonon CC, Correia MF, et al. In vitro antibacterial and cytotoxic activities of carvacrol and terpinen-4-ol against biofilm formation on titanium implant surfaces[J]. Biofouling, 2018,34(6):699-709.
doi: 10.1080/08927014.2018.1485892 pmid: 30187780
[35] Giannelli M, Landini G, Materassi F, et al. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study[J]. Lasers Med Sci, 2017,32(4):857-864.
doi: 10.1007/s10103-017-2185-y pmid: 28283813
[36] Ghasemi M, Etemadi A, Nedaei M, et al. Antimicrobial efficacy of photodynamic therapy using two different light sources on the titanium-adherent biofilms of Aggregatibacter actinomycetemcomitans: an in vitro study[J]. Photodiagnosis Photodyn Ther, 2019,26:85-89.
pmid: 30836212
[37] Sayar F, Chiniforush N, Bahador A, et al. Efficacy of antimicrobial photodynamic therapy for elimination of Aggregatibacter actinomycetemcomitans biofilm on laser-lok titanium discs[J]. Photodiagnosis Pho-todyn Ther, 2019,27:462-466.
[38] Kreisler M, Kohnen W, Marinello C, et al. Bacte-ricidal effect of the Er: YAG laser on dental implant surfaces: an in vitro study[J]. J Periodontol, 2002,73(11):1292-1298.
doi: 10.1902/jop.2002.73.11.1292 pmid: 12479633
[39] Sahrmann P, Ronay V, Hofer D, et al. In vitro cleaning potential of three different implant debridement me-thods[J]. Clin Oral Implants Res, 2015,26(3):314-319.
doi: 10.1111/clr.12322 pmid: 24373056
[40] Louropoulou A, Slot DE, van der Weijden F. Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: a systematic review[J]. Clin Oral Implants Res, 2015,26(7):841-850.
pmid: 24641774
[41] Lee BS, Shih KS, Lai CH, et al. Surface property alterations and osteoblast attachment to contaminated titanium surfaces after different surface treatments: an in vitro study[J]. Clin Implant Dent Relat Res, 2018,20(4):583-591.
doi: 10.1111/cid.12624 pmid: 29939477
[42] Daubert DM, Weinstein BF. Biofilm as a risk factor in implant treatment[J]. Periodontol 2000, 2019,81(1):29-40.
doi: 10.1111/prd.12280 pmid: 31407437
[43] Figuero E, Graziani F, Sanz I, et al. Management of peri-implant mucositis and peri-implantitis[J]. Perio-dontol 2000, 2014,66(1):255-273.
[1] 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158.
[2] 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11.
[3] 黄晓慧,祁本婷,杨洁,刘玉,孙卫斌. 机械性邻面菌斑控制措施对牙周非手术治疗效果影响的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 656-663.
[4] 黄培勍,彭显,徐欣. 口腔挥发性硫化物的产生与针对性防治的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 592-599.
[5] 郑桂婷,徐燕,吴明月. 种植体周围疾病治疗的专家共识及治疗方法的进展[J]. 国际口腔医学杂志, 2020, 47(6): 725-731.
[6] 杨志雷,刘宝盈. 龋病牙菌斑微生态研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 506-514.
[7] 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470.
[8] 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477.
[9] 陈艳艳,彭显,周学东,程磊. 定量光导荧光技术在龋病及牙周疾病诊治中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 699-704.
[10] 青薇,黄丽娟,郑佳俊,任静,李成龙,庹嫱,任小华,牟雁东. 16S核糖体DNA高通量测序研究种植体龈沟液微生物的变化[J]. 国际口腔医学杂志, 2019, 46(5): 532-539.
[11] 黄海霞, 兰玉燕, 张昊, 潘兰兰, 郭玲, 刘敏. 慢性牙周炎患者种植修复后种植体牙周指数及龈沟液炎性因子水平的变化研究[J]. 国际口腔医学杂志, 2018, 45(4): 396-402.
[12] 周双双 郑欣 周学东 徐欣. 菌斑生物膜产碱代谢与龋病[J]. 国际口腔医学杂志, 2016, 43(5): 573-577.
[13] 霍静怡,苏畅,刘美延,沈丽曼,王珏,李雪. 儿童3种刷牙方法清除菌斑效果的随机对照试验[J]. 国际口腔医学杂志, 2015, 42(5): 528-530.
[14] 孟令贤 班宇. 种植体表面去污联合手术疗法治疗种植体周围炎[J]. 国际口腔医学杂志, 2015, 42(4): 458-461.
[15] 孙磊 夏荣. 钛基种植体表面抗菌改性的研究进展[J]. 国际口腔医学杂志, 2015, 42(4): 475-479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .