国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (3): 334-340.doi: 10.7518/gjkq.2021021
摘要:
钛种植体是口腔种植修复的常用种植体,但它本身无抗菌活性,临床若发生细菌感染,可能会引起种植体周围炎,导致种植治疗失败。银纳米颗粒(Ag NP)作为一种抗菌谱广、低耐药性的抗菌剂,常用以构建钛种植体上抗菌表面涂层,从而增强钛种植体的抗菌性。近10年来,研究人员关于钛基表面稳定负载Ag NP方面进行了大量研究,通过调整掺银方法或添加其他物质,进一步提高钛种植体的抗菌活性,同时避免Ag NP的细胞毒性。本文综述了目前在钛种植体上负载Ag NP的方法及其优缺点,并且对如何优化Ag NP的负载量和降低细胞毒性方面进行了方法总结,以期为相关领域研究提供参考。
中图分类号:
[1] |
Li PY, Tong ZF, Huo LN, et al. Antibacterial and biological properties of biofunctionalized nanocompo-sites on titanium for implant application[J]. J Biomater Appl, 2016,31(2):205-214.
doi: 10.1177/0885328216645951 |
[2] |
Wiedmer D, Petersen FC, Lönn-Stensrud J, et al. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces[J]. Biofouling, 2017,33(6):451-459.
doi: 10.1080/08927014.2017.1322585 pmid: 28524724 |
[3] | Zhang HZ, Yu S, Tian A, et al. Improved antibacte-rial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies[J]. Int J Nanomed, 2013: 4379. |
[4] |
Alt V, Bitschnau A, Osterling J, et al. The effects of combined gentamicin‒hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model[J]. Biomaterials, 2006,27(26):4627-4634.
doi: 10.1016/j.biomaterials.2006.04.035 |
[5] |
Gulati K, Aw M, Losic D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection[J]. Nanoscale Res Lett, 2011,6(1):571.
doi: 10.1186/1556-276X-6-571 |
[6] |
Jia HY, Kerr LL. Sustained ibuprofen release using composite poly(lactic-co-glycolic acid)/titanium dioxide nanotubes from Ti implant surface[J]. J Pharm Sci, 2013,102(7):2341-2348.
doi: 10.1002/jps.23580 |
[7] |
Nowack B, Krug HF, Height M. 120 years of nanosilver history: implications for policy makers[J]. Environ Sci Technol, 2011,45(4):1177-1183.
doi: 10.1021/es103316q |
[8] |
Cao HL, Liu XY, Meng FH, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects[J]. Biomaterials, 2011,32(3):693-705.
doi: 10.1016/j.biomaterials.2010.09.066 |
[9] |
Jin J, Fei D, Zhang Y, et al. Functionalized titanium implant in regulating bacteria and cell response[J]. Int J Nanomedicine, 2019,14:1433-1450.
doi: 10.2147/IJN |
[10] |
Reidy B, Haase A, Luch A, et al. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and re-commendations for future studies and applications[J]. Materials (Basel), 2013,6(6):2295-2350.
doi: 10.3390/ma6062295 |
[11] |
AshaRani PV, Low Kah Mun G, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J]. ACS Nano, 2009,3(2):279-290.
doi: 10.1021/nn800596w pmid: 19236062 |
[12] |
Ahamed M, Karns M, Goodson M, et al. DNA da-mage response to different surface chemistry of silver nanoparticles in mammalian cells[J]. Toxicol Appl Pharmacol, 2008,233(3):404-410.
doi: 10.1016/j.taap.2008.09.015 |
[13] |
Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal[J]. Angew Chem Int Ed Engl, 2013,52(6):1636-1653.
doi: 10.1002/anie.v52.6 |
[14] |
Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Mater Sci Eng R Rep, 2004,47(3/4):49-121.
doi: 10.1016/j.mser.2004.11.001 |
[15] |
Conrad JR, Radtke JL, Dodd RA, et al. Plasma source ion-implantation technique for surface modification of materials[J]. J Appl Phys, 1987,62(11):4591-4596.
doi: 10.1063/1.339055 |
[16] |
Mei SL, Wang HY, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes[J]. Biomaterials, 2014,35(14):4255-4265.
doi: 10.1016/j.biomaterials.2014.02.005 |
[17] | Zhu Y, Cao H, Qiao S, et al. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants[J]. Int J Nanomedicine, 2015,10:6659-6674. |
[18] | Qiao S, Cao H, Zhao X, et al. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs[J]. Int J Nanomedicine, 2015,10:653-664. |
[19] |
Cao H, Zhang W, Meng F, et al. Osteogenesis catalyzed by titanium-supported silver nanoparticles[J]. ACS Appl Mater Interfaces, 2017,9(6):5149-5157.
doi: 10.1021/acsami.6b15448 |
[20] |
Wang GM, Jin WH, Qasim AM, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species[J]. Biomaterials, 2017,124:25-34.
doi: 10.1016/j.biomaterials.2017.01.028 |
[21] |
He XJ, Zhang XY, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings[J]. Biomed Mater, 2016,11(4):045008.
doi: 10.1088/1748-6041/11/4/045008 |
[22] |
Kheur S, Singh N, Bodas D, et al. Nanoscale silver depositions inhibit microbial colonization and improve biocompatibility of titanium abutments[J]. Colloids Surf B Biointerfaces, 2017,159:151-158.
doi: 10.1016/j.colsurfb.2017.07.079 |
[23] |
Lampé I, Beke D, Biri S, et al. Investigation of silver nanoparticles on titanium surface created by ion implantation technology[J]. Int J Nanomed, 2019,14:4709-4721.
doi: 10.2147/IJN |
[24] | Song DH, Uhm SH, Lee SB, et al. Antimicrobial silver-containing titanium oxide nanocomposite coa-tings by a reactive magnetron sputtering[J]. Thin So-lid Films, 2011,519(20):7079-7085. |
[25] |
Abuayyash A, Ziegler N, Meyer H, et al. Enhanced antibacterial performance of ultrathin silver/platinum nanopatches by a sacrificial anode mechanism[J]. Nanomedicine, 2020,24:102126.
doi: S1549-9634(19)30210-2 pmid: 31734515 |
[26] | Durán N, Durán M, de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity[J]. Nanomedicine, 2016,12(3):789-799. |
[27] | Abbasi E, Milani M, Fekri Aval S, et al. Silver nanoparticles: synjournal methods, bio-applications and properties[J]. Crit Rev Microbiol, 2016,42(2):173-180. |
[28] |
Pokrowiecki R, Zareba T, Szaraniec B, et al. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery[J]. Int J Nanomed, 2017,12:4285-4297.
doi: 10.2147/IJN.S131163 pmid: 28652733 |
[29] |
Gunputh UF, Le HR, Handy RD, et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants[J]. Mater Sci Eng C Mater Biol Appl, 2018,91:638-644.
doi: 10.1016/j.msec.2018.05.074 |
[30] |
Li M, Liu XM, Xu ZQ, et al. Dopamine modified organic‒inorganic hybrid coating for antimicrobial and osteogenesis[J]. ACS Appl Mater Interfaces, 2016,8(49):33972-33981.
doi: 10.1021/acsami.6b09457 |
[31] |
Zhu M, Liu X, Tan L, et al. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing[J]. J Hazard Mater, 2020,383:121122.
doi: 10.1016/j.jhazmat.2019.121122 |
[32] |
Guan M, Chen Y, Wei Y, et al. Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO2 nanorods in vitro and in vivo[J]. Int J Nanomedicine, 2019,14:2903-2914.
doi: 10.2147/IJN |
[33] |
Jin J, Zhang L, Shi M, et al. Ti-GO-Ag nanocompo-site: the effect of content level on the antimicrobial activity and cytotoxicity[J]. Int J Nanomedicine, 2017,12:4209-4224.
doi: 10.2147/IJN |
[34] |
Xu Z, Li M, Li X, et al. Antibacterial activity of silver doped titanate nanowires on Ti implants[J]. ACS Appl Mater Interfaces, 2016,8(26):16584-16594.
doi: 10.1021/acsami.6b04161 |
[35] |
Zhao CJ, Feng B, Li YT, et al. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light[J]. Appl Surf Sci, 2013,280:8-14.
doi: 10.1016/j.apsusc.2013.04.057 |
[36] |
Yuan Z, Liu P, Hao Y, et al. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response[J]. Colloids Surf B Biointerfaces, 2018,171:597-605.
doi: 10.1016/j.colsurfb.2018.07.064 |
[37] |
Li B, Ma J, Wang D, et al. Self-adjusting antibacte-rial properties of Ag-incorporated nanotubes on micro-nanostructured Ti surfaces[J]. Biomater Sci, 2019,7(10):4075-4087.
doi: 10.1039/C9BM00862D |
[38] | 马千里. 纯钛牙科种植体材料表面阳极氧化及载银处理的生物学研究[D]. 西安: 第四军医大学, 2011: 26. |
Ma QL. Biological research of titanium dental im-plant materials surface anodization and Ag-loading[D]. Xi,an: The Fourth Military Medical University, 2011: 26. | |
[39] |
Besinis A, Hadi SD, Le HR, et al. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings[J]. Nanotoxicology, 2017,11(3):327-338.
doi: 10.1080/17435390.2017.1299890 pmid: 28281851 |
[40] |
Zhang LC, Zhang LH, Yang Y, et al. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes[J]. J Biomed Mater Res B Appl Biomater, 2016,104(5):1004-1012.
doi: 10.1002/jbm.b.v104.5 |
[41] |
Huang R, Li WZ, Lv X, et al. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing[J]. Biomaterials, 2015,53:58-75.
doi: 10.1016/j.biomaterials.2015.02.076 pmid: 25890707 |
[42] |
Zhong X, Song YJ, Yang P, et al. Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded chitosan/hyaluronic a-cid antibacterial multilayer via layer-by-layer self-assembly[J]. PLoS One, 2016,11(1):e0146957.
doi: 10.1371/journal.pone.0146957 |
[43] |
Li W, Yang Y, Zhang H, et al. Improvements on biological and antimicrobial properties of titanium modified by AgNPs-loaded chitosan-heparin polyelectrolyte multilayers[J]. J Mater Sci Mater Med, 2019,30(5):52.
doi: 10.1007/s10856-019-6250-x |
[44] |
Zhang XM, Li ZY, Yuan XB, et al. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(5):2816-2820.
doi: 10.1016/j.msec.2013.03.010 |
[45] |
Qiu WZ, Wu GP, Xu ZK. Robust coatings via catechol-amine codeposition: mechanism, kinetics, and application[J]. ACS Appl Mater Interfaces, 2018,10(6):5902-5908.
doi: 10.1021/acsami.7b18934 |
[46] |
GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, et al. Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application[J]. ACS Appl Mater Interfaces, 2015,7(22):12176-12183.
doi: 10.1021/acsami.5b02542 |
[47] |
Ding XY, Zhang YM, Ling JY, et al. Rapid mussel-inspired synjournal of PDA-Zn-Ag nanofilms on TiO2 nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature[J]. Colloids Surf B Biointerfaces, 2018,171:101-109.
doi: 10.1016/j.colsurfb.2018.07.014 |
[48] |
Zhang Y, Dong C, Yang S, et al. Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect[J]. J Biomater Appl, 2018,32(9):1289-1299.
doi: 10.1177/0885328218755538 |
[49] |
Cheng YF, Zhang JY, Wang YB, et al. Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application[J]. Mater Sci Eng C Mater Biol Appl, 2019,98:649-656.
doi: S0928-4931(18)31624-2 pmid: 30813068 |
[50] | Xie K, Zhou Z, Guo Y, et al. Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity[J]. Adv Healthc Mater, 2019,8(5):e1801465. |
[51] |
Horzum N, Boyaci E, Eroğlu AE, et al. Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations[J]. Biomacromolecules, 2010,11(12):3301-3308.
doi: 10.1021/bm100755x |
[52] |
Marpu S, Benton E. Shining light on chitosan: a review on the usage of chitosan for photonics and nanomaterials research[J]. Int J Mol Sci, 2018,19(6):1795.
doi: 10.3390/ijms19061795 |
[53] |
van Hengel IAJ, Riool M, Fratila-Apachitei LE, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Sta-phylococcus aureus[J]. Biomaterials, 2017,140:1-15.
doi: 10.1016/j.biomaterials.2017.02.030 |
[54] |
van Hengel IAJ, Putra NE, Tierolf MWAM, et al. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria[J]. Acta Biomater, 2020,107:325-337.
doi: S1742-7061(20)30132-X pmid: 32145392 |
[55] |
Tian B, Chen W, Yu DG, et al. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity[J]. J Mech Behav Biomed Mater, 2016,61:345-359.
doi: S1751-6161(16)30066-2 pmid: 27107263 |
[56] |
Gunputh UF, Le HR, Lawton K, et al. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus[J]. Nanotoxicology, 2020,14(1):97-110.
doi: 10.1080/17435390.2019.1665727 |
[1] | 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394. |
[2] | 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419. |
[3] | 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233. |
[4] | 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533. |
[5] | 曾越, 夏海斌, 王敏. 纳米材料改良义齿基托力学性能及抗菌性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 455-458. |
[6] | 陈秀春, 张志民, 洪丽华, 张雅琪, 郑鹏, 李文月. 双甲基丙烯酸二缩三乙二醇酯细胞毒性的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 209-213. |
[7] | 于文雯,王旭,孙新华. 正畸金属矫治器的生物安全性研究进展[J]. 国际口腔医学杂志, 2015, 42(5): 592-596. |
[8] | 樊牮,邹耿森,陈江. 钛种植体表面纳米改性及其与机体免疫应答[J]. 国际口腔医学杂志, 2014, 41(6): 691-693. |
[9] | 吴雨鸿,林居红,张红梅. 三氧化聚合物与波特兰水门汀的理化和生物学性能及其应用[J]. 国际口腔医学杂志, 2014, 41(6): 699-702. |
[10] | 庄秀妹 邓飞龙. 钛表面及其涂层纳米化对骨结合的影响和机制[J]. 国际口腔医学杂志, 2014, 41(4): 427-430. |
[11] | 颜雯 李伟. 常用根管充填材料的细胞毒性和基因毒性[J]. 国际口腔医学杂志, 2013, 40(5): 608-611. |
[12] | 刘盘龙1 周红艳2 王东苗3 梅予锋2. 氟牙症发病机制的研究进展[J]. 国际口腔医学杂志, 2013, 40(1): 94-97. |
[13] | 刘媛媛1 李果1 任家银1 赵书平1 聂晶2 王虎1. 纳米钛膜种植体-骨界面的骨整合研究[J]. 国际口腔医学杂志, 2012, 39(3): 312-316. |
[14] | 赵飞综述 王革审校. 牙科铸造合金诱发慢性毒副作用细胞机制的研究进展[J]. 国际口腔医学杂志, 2012, 39(2): 244-247. |
[15] | 司家文1 万浩元1 胡启凡2 孙惠强1. 纯钛表面氧化钛和氧化锆涂层的结构性能及细胞毒性[J]. 国际口腔医学杂志, 2011, 38(5): 531-534. |
|