国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (3): 334-340.doi: 10.7518/gjkq.2021021

• 综述 • 上一篇    下一篇

钛种植体表面银纳米颗粒负载方法的进展

朱俊瑾(),王剑   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院修复科 成都 610041
  • 收稿日期:2020-08-09 修回日期:2020-12-15 出版日期:2021-05-01 发布日期:2021-05-14
  • 作者简介:朱俊瑾,学士,Email: 512391940@qq.com
  • 基金资助:
    国家自然科学基金(81970985)

Advances in the loading methods of silver nanoparticles on the surface of titanium implants

Zhu Junjin(),Wang Jian.   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodon-tics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-08-09 Revised:2020-12-15 Online:2021-05-01 Published:2021-05-14
  • Supported by:
    National Natural Science Foundation of China(81970985)

摘要:

钛种植体是口腔种植修复的常用种植体,但它本身无抗菌活性,临床若发生细菌感染,可能会引起种植体周围炎,导致种植治疗失败。银纳米颗粒(Ag NP)作为一种抗菌谱广、低耐药性的抗菌剂,常用以构建钛种植体上抗菌表面涂层,从而增强钛种植体的抗菌性。近10年来,研究人员关于钛基表面稳定负载Ag NP方面进行了大量研究,通过调整掺银方法或添加其他物质,进一步提高钛种植体的抗菌活性,同时避免Ag NP的细胞毒性。本文综述了目前在钛种植体上负载Ag NP的方法及其优缺点,并且对如何优化Ag NP的负载量和降低细胞毒性方面进行了方法总结,以期为相关领域研究提供参考。

关键词: 钛种植体, 银纳米颗粒, 负载方法, 抗菌性能, 细胞毒性

Abstract:

Titanium dental implants are commonly used in oral implant repair. However, because they lack intrinsic antibacterial activity, these implants may lead to peri-implantitis and even implant surgery failure when bacterial infection occurs. Silver nanoparticles (Ag NPs), which are antibacterial agents with a wide antibacterial spectrum and low resistance, are commonly used to build antibacterial coatings on titanium implants and amplify their antimicrobial properties. Over the last decade, researchers have conducted numerous studies on the integration of Ag NPs into titanium implants to improve the antibacterial properties of the latter and avoid the cytotoxicity of the former by adjusting their synthesis methods or adding supportive ingredients. This paper reviews the current methods of loading Ag NPs on titanium implants and evaluates their advantages and disadvantages. Methods to increase Ag NPs and reduce their cytotoxicity are also summarized to provide new insights for future research.

Key words: titanium implant, silver nanoparticle, loading method, antibacterial activity, cytotoxicity

中图分类号: 

  • R783.1
[1] Li PY, Tong ZF, Huo LN, et al. Antibacterial and biological properties of biofunctionalized nanocompo-sites on titanium for implant application[J]. J Biomater Appl, 2016,31(2):205-214.
doi: 10.1177/0885328216645951
[2] Wiedmer D, Petersen FC, Lönn-Stensrud J, et al. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces[J]. Biofouling, 2017,33(6):451-459.
doi: 10.1080/08927014.2017.1322585 pmid: 28524724
[3] Zhang HZ, Yu S, Tian A, et al. Improved antibacte-rial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies[J]. Int J Nanomed, 2013: 4379.
[4] Alt V, Bitschnau A, Osterling J, et al. The effects of combined gentamicin‒hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model[J]. Biomaterials, 2006,27(26):4627-4634.
doi: 10.1016/j.biomaterials.2006.04.035
[5] Gulati K, Aw M, Losic D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection[J]. Nanoscale Res Lett, 2011,6(1):571.
doi: 10.1186/1556-276X-6-571
[6] Jia HY, Kerr LL. Sustained ibuprofen release using composite poly(lactic-co-glycolic acid)/titanium dioxide nanotubes from Ti implant surface[J]. J Pharm Sci, 2013,102(7):2341-2348.
doi: 10.1002/jps.23580
[7] Nowack B, Krug HF, Height M. 120 years of nanosilver history: implications for policy makers[J]. Environ Sci Technol, 2011,45(4):1177-1183.
doi: 10.1021/es103316q
[8] Cao HL, Liu XY, Meng FH, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects[J]. Biomaterials, 2011,32(3):693-705.
doi: 10.1016/j.biomaterials.2010.09.066
[9] Jin J, Fei D, Zhang Y, et al. Functionalized titanium implant in regulating bacteria and cell response[J]. Int J Nanomedicine, 2019,14:1433-1450.
doi: 10.2147/IJN
[10] Reidy B, Haase A, Luch A, et al. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and re-commendations for future studies and applications[J]. Materials (Basel), 2013,6(6):2295-2350.
doi: 10.3390/ma6062295
[11] AshaRani PV, Low Kah Mun G, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J]. ACS Nano, 2009,3(2):279-290.
doi: 10.1021/nn800596w pmid: 19236062
[12] Ahamed M, Karns M, Goodson M, et al. DNA da-mage response to different surface chemistry of silver nanoparticles in mammalian cells[J]. Toxicol Appl Pharmacol, 2008,233(3):404-410.
doi: 10.1016/j.taap.2008.09.015
[13] Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal[J]. Angew Chem Int Ed Engl, 2013,52(6):1636-1653.
doi: 10.1002/anie.v52.6
[14] Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Mater Sci Eng R Rep, 2004,47(3/4):49-121.
doi: 10.1016/j.mser.2004.11.001
[15] Conrad JR, Radtke JL, Dodd RA, et al. Plasma source ion-implantation technique for surface modification of materials[J]. J Appl Phys, 1987,62(11):4591-4596.
doi: 10.1063/1.339055
[16] Mei SL, Wang HY, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes[J]. Biomaterials, 2014,35(14):4255-4265.
doi: 10.1016/j.biomaterials.2014.02.005
[17] Zhu Y, Cao H, Qiao S, et al. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants[J]. Int J Nanomedicine, 2015,10:6659-6674.
[18] Qiao S, Cao H, Zhao X, et al. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs[J]. Int J Nanomedicine, 2015,10:653-664.
[19] Cao H, Zhang W, Meng F, et al. Osteogenesis catalyzed by titanium-supported silver nanoparticles[J]. ACS Appl Mater Interfaces, 2017,9(6):5149-5157.
doi: 10.1021/acsami.6b15448
[20] Wang GM, Jin WH, Qasim AM, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species[J]. Biomaterials, 2017,124:25-34.
doi: 10.1016/j.biomaterials.2017.01.028
[21] He XJ, Zhang XY, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings[J]. Biomed Mater, 2016,11(4):045008.
doi: 10.1088/1748-6041/11/4/045008
[22] Kheur S, Singh N, Bodas D, et al. Nanoscale silver depositions inhibit microbial colonization and improve biocompatibility of titanium abutments[J]. Colloids Surf B Biointerfaces, 2017,159:151-158.
doi: 10.1016/j.colsurfb.2017.07.079
[23] Lampé I, Beke D, Biri S, et al. Investigation of silver nanoparticles on titanium surface created by ion implantation technology[J]. Int J Nanomed, 2019,14:4709-4721.
doi: 10.2147/IJN
[24] Song DH, Uhm SH, Lee SB, et al. Antimicrobial silver-containing titanium oxide nanocomposite coa-tings by a reactive magnetron sputtering[J]. Thin So-lid Films, 2011,519(20):7079-7085.
[25] Abuayyash A, Ziegler N, Meyer H, et al. Enhanced antibacterial performance of ultrathin silver/platinum nanopatches by a sacrificial anode mechanism[J]. Nanomedicine, 2020,24:102126.
doi: S1549-9634(19)30210-2 pmid: 31734515
[26] Durán N, Durán M, de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity[J]. Nanomedicine, 2016,12(3):789-799.
[27] Abbasi E, Milani M, Fekri Aval S, et al. Silver nanoparticles: synjournal methods, bio-applications and properties[J]. Crit Rev Microbiol, 2016,42(2):173-180.
[28] Pokrowiecki R, Zareba T, Szaraniec B, et al. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery[J]. Int J Nanomed, 2017,12:4285-4297.
doi: 10.2147/IJN.S131163 pmid: 28652733
[29] Gunputh UF, Le HR, Handy RD, et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants[J]. Mater Sci Eng C Mater Biol Appl, 2018,91:638-644.
doi: 10.1016/j.msec.2018.05.074
[30] Li M, Liu XM, Xu ZQ, et al. Dopamine modified organic‒inorganic hybrid coating for antimicrobial and osteogenesis[J]. ACS Appl Mater Interfaces, 2016,8(49):33972-33981.
doi: 10.1021/acsami.6b09457
[31] Zhu M, Liu X, Tan L, et al. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing[J]. J Hazard Mater, 2020,383:121122.
doi: 10.1016/j.jhazmat.2019.121122
[32] Guan M, Chen Y, Wei Y, et al. Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO2 nanorods in vitro and in vivo[J]. Int J Nanomedicine, 2019,14:2903-2914.
doi: 10.2147/IJN
[33] Jin J, Zhang L, Shi M, et al. Ti-GO-Ag nanocompo-site: the effect of content level on the antimicrobial activity and cytotoxicity[J]. Int J Nanomedicine, 2017,12:4209-4224.
doi: 10.2147/IJN
[34] Xu Z, Li M, Li X, et al. Antibacterial activity of silver doped titanate nanowires on Ti implants[J]. ACS Appl Mater Interfaces, 2016,8(26):16584-16594.
doi: 10.1021/acsami.6b04161
[35] Zhao CJ, Feng B, Li YT, et al. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light[J]. Appl Surf Sci, 2013,280:8-14.
doi: 10.1016/j.apsusc.2013.04.057
[36] Yuan Z, Liu P, Hao Y, et al. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response[J]. Colloids Surf B Biointerfaces, 2018,171:597-605.
doi: 10.1016/j.colsurfb.2018.07.064
[37] Li B, Ma J, Wang D, et al. Self-adjusting antibacte-rial properties of Ag-incorporated nanotubes on micro-nanostructured Ti surfaces[J]. Biomater Sci, 2019,7(10):4075-4087.
doi: 10.1039/C9BM00862D
[38] 马千里. 纯钛牙科种植体材料表面阳极氧化及载银处理的生物学研究[D]. 西安: 第四军医大学, 2011: 26.
Ma QL. Biological research of titanium dental im-plant materials surface anodization and Ag-loading[D]. Xi,an: The Fourth Military Medical University, 2011: 26.
[39] Besinis A, Hadi SD, Le HR, et al. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings[J]. Nanotoxicology, 2017,11(3):327-338.
doi: 10.1080/17435390.2017.1299890 pmid: 28281851
[40] Zhang LC, Zhang LH, Yang Y, et al. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes[J]. J Biomed Mater Res B Appl Biomater, 2016,104(5):1004-1012.
doi: 10.1002/jbm.b.v104.5
[41] Huang R, Li WZ, Lv X, et al. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing[J]. Biomaterials, 2015,53:58-75.
doi: 10.1016/j.biomaterials.2015.02.076 pmid: 25890707
[42] Zhong X, Song YJ, Yang P, et al. Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded chitosan/hyaluronic a-cid antibacterial multilayer via layer-by-layer self-assembly[J]. PLoS One, 2016,11(1):e0146957.
doi: 10.1371/journal.pone.0146957
[43] Li W, Yang Y, Zhang H, et al. Improvements on biological and antimicrobial properties of titanium modified by AgNPs-loaded chitosan-heparin polyelectrolyte multilayers[J]. J Mater Sci Mater Med, 2019,30(5):52.
doi: 10.1007/s10856-019-6250-x
[44] Zhang XM, Li ZY, Yuan XB, et al. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(5):2816-2820.
doi: 10.1016/j.msec.2013.03.010
[45] Qiu WZ, Wu GP, Xu ZK. Robust coatings via catechol-amine codeposition: mechanism, kinetics, and application[J]. ACS Appl Mater Interfaces, 2018,10(6):5902-5908.
doi: 10.1021/acsami.7b18934
[46] GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, et al. Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application[J]. ACS Appl Mater Interfaces, 2015,7(22):12176-12183.
doi: 10.1021/acsami.5b02542
[47] Ding XY, Zhang YM, Ling JY, et al. Rapid mussel-inspired synjournal of PDA-Zn-Ag nanofilms on TiO2 nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature[J]. Colloids Surf B Biointerfaces, 2018,171:101-109.
doi: 10.1016/j.colsurfb.2018.07.014
[48] Zhang Y, Dong C, Yang S, et al. Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect[J]. J Biomater Appl, 2018,32(9):1289-1299.
doi: 10.1177/0885328218755538
[49] Cheng YF, Zhang JY, Wang YB, et al. Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application[J]. Mater Sci Eng C Mater Biol Appl, 2019,98:649-656.
doi: S0928-4931(18)31624-2 pmid: 30813068
[50] Xie K, Zhou Z, Guo Y, et al. Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity[J]. Adv Healthc Mater, 2019,8(5):e1801465.
[51] Horzum N, Boyaci E, Eroğlu AE, et al. Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations[J]. Biomacromolecules, 2010,11(12):3301-3308.
doi: 10.1021/bm100755x
[52] Marpu S, Benton E. Shining light on chitosan: a review on the usage of chitosan for photonics and nanomaterials research[J]. Int J Mol Sci, 2018,19(6):1795.
doi: 10.3390/ijms19061795
[53] van Hengel IAJ, Riool M, Fratila-Apachitei LE, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Sta-phylococcus aureus[J]. Biomaterials, 2017,140:1-15.
doi: 10.1016/j.biomaterials.2017.02.030
[54] van Hengel IAJ, Putra NE, Tierolf MWAM, et al. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria[J]. Acta Biomater, 2020,107:325-337.
doi: S1742-7061(20)30132-X pmid: 32145392
[55] Tian B, Chen W, Yu DG, et al. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity[J]. J Mech Behav Biomed Mater, 2016,61:345-359.
doi: S1751-6161(16)30066-2 pmid: 27107263
[56] Gunputh UF, Le HR, Lawton K, et al. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus[J]. Nanotoxicology, 2020,14(1):97-110.
doi: 10.1080/17435390.2019.1665727
[1] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[2] 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419.
[3] 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233.
[4] 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533.
[5] 曾越, 夏海斌, 王敏. 纳米材料改良义齿基托力学性能及抗菌性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 455-458.
[6] 陈秀春, 张志民, 洪丽华, 张雅琪, 郑鹏, 李文月. 双甲基丙烯酸二缩三乙二醇酯细胞毒性的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 209-213.
[7] 于文雯,王旭,孙新华. 正畸金属矫治器的生物安全性研究进展[J]. 国际口腔医学杂志, 2015, 42(5): 592-596.
[8] 樊牮,邹耿森,陈江. 钛种植体表面纳米改性及其与机体免疫应答[J]. 国际口腔医学杂志, 2014, 41(6): 691-693.
[9] 吴雨鸿,林居红,张红梅. 三氧化聚合物与波特兰水门汀的理化和生物学性能及其应用[J]. 国际口腔医学杂志, 2014, 41(6): 699-702.
[10] 庄秀妹 邓飞龙. 钛表面及其涂层纳米化对骨结合的影响和机制[J]. 国际口腔医学杂志, 2014, 41(4): 427-430.
[11] 颜雯 李伟. 常用根管充填材料的细胞毒性和基因毒性[J]. 国际口腔医学杂志, 2013, 40(5): 608-611.
[12] 刘盘龙1 周红艳2 王东苗3 梅予锋2. 氟牙症发病机制的研究进展[J]. 国际口腔医学杂志, 2013, 40(1): 94-97.
[13] 刘媛媛1 李果1 任家银1 赵书平1 聂晶2 王虎1. 纳米钛膜种植体-骨界面的骨整合研究[J]. 国际口腔医学杂志, 2012, 39(3): 312-316.
[14] 赵飞综述 王革审校. 牙科铸造合金诱发慢性毒副作用细胞机制的研究进展[J]. 国际口腔医学杂志, 2012, 39(2): 244-247.
[15] 司家文1 万浩元1 胡启凡2 孙惠强1. 纯钛表面氧化钛和氧化锆涂层的结构性能及细胞毒性[J]. 国际口腔医学杂志, 2011, 38(5): 531-534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .