国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (2): 228-233.doi: 10.7518/gjkq.2019027
Yuhao Liu,Quan Yuan,Shiwen Zhang()
摘要:
口腔种植体相关感染已成为影响种植体成功率的重要因素。近年来,研究开发具有抗菌性能的种植体表面涂层材料,尤其是载药涂层材料,已成为新的研究热点。共价接枝是将抗菌药物通过共价键固定于种植体表面的新型载药方法。与其他载药方法相比,其具有优化药物释放模式、改变药物的抗菌机制、提高药物稳定性等优点。本文就共价接枝构建钛种植体载药抗菌涂层的构建方式、应用优劣势及发展前景进行综述。
中图分类号:
[1] | 李涛, 王娜, 张振庭 . 局部载药涂层预防种植体周围感染的研究进展[J]. 北京口腔医学, 2017,25(5):297-300. |
Li T, Wang N, Zhang ZT . Research progress on local drug-loaded coatings for the prevention of peri-im-plant infection[J]. Beijing J Stomatol, 2017,25(5):297-300. | |
[2] |
翁升欣, 赵旭, 关岳锋 , 等. 口腔种植体抗菌涂层材料研究进展[J]. 中国实用口腔科杂志, 2016,9(1):49-53.
doi: 10.7504/kq.2016.01.011 |
Weng SX, Zhao X, Guan YF , et al. Research progress of oral implant antimicrobial coating material[J]. Chin J Pract Stomatol, 2016,9(1):49-53.
doi: 10.7504/kq.2016.01.011 |
|
[3] |
Goudouri OM, Kontonasaki E, Lohbauer U , et al. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy[J]. Acta Biomater, 2014,10(8):3795-3810.
doi: 10.1016/j.actbio.2014.03.028 pmid: 24704700 |
[4] |
于娜, 唐晓琳 . 种植体周围炎的危险因素及其防治新进展[J]. 牙体牙髓牙周病学杂志, 2017,27(1):49-52.
doi: 10.15956/j.cnki.chin.j.conserv.dent.2017.01.011 |
Yu N, Tang XL . Peri-implantitis and its risk factors, prevention and treatment[J]. Chin J Conserv Dent, 2017,27(1) : 49-52.
doi: 10.15956/j.cnki.chin.j.conserv.dent.2017.01.011 |
|
[5] | Smeets R, Stadlinger B, Schwarz F , et al. Impact of dental implant surface modifications on osseointe-gration[J]. Biomed Res Int, 2016,2016:6285620. |
[6] |
Shalabi MM, Gortemaker A, Van’t Hof MA , et al. Implant surface roughness and bone healing: a sys-tematic review[J]. J Dent Res, 2006,85(6):496-500.
doi: 10.1016/j.clon.2009.08.014 pmid: 16723643 |
[7] |
Lin X, Yang S, Lai K , et al. Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods[J]. Nanomedicine, 2017,13(1):123-142.
doi: 10.1016/j.nano.2016.08.003 pmid: 27553074 |
[8] |
Neoh KG, Hu X, Zheng D , et al. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012,33(10):2813-2822.
doi: 10.1016/j.biomaterials.2012.01.018 pmid: 22257725 |
[9] |
Seddiki O, Harnagea C, Levesque L , et al. Evidence of antibacterial activity on titanium surfaces through nanotextures[J]. Appl Surf Sci, 2014,308:275-284.
doi: 10.1016/j.apsusc.2014.04.155 |
[10] |
Losic D, Aw MS, Santos A , et al. Titania nanotube arrays for local drug delivery: recent advances and perspectives[J]. Expert Opin Drug Deliv, 2015,12(1):103-127.
doi: 10.1517/17425247.2014.945418 pmid: 25376706 |
[11] |
Bosco R, Iafisco M, Tampieri A , et al. Hydroxya-patite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity[J]. Appl Surf Sci, 2015,328:516-524.
doi: 10.1016/j.apsusc.2014.12.072 |
[12] |
Doadrio AL, Conde A, Arenas MA , et al. Use of anodized titanium alloy as drug carrier: ibuprofen as model of drug releasing[J]. Int J Pharm, 2015,492(1/ 2):207-212.
doi: 10.1016/j.ijpharm.2015.07.046 |
[13] |
Ordikhani F, Tamjid E, Simchi A . Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for preven-tion of implant-associated infections[J]. Mater Sci Eng C Mater Biol Appl, 2014,41:240-248.
doi: 10.1016/j.msec.2014.04.036 pmid: 24907757 |
[14] |
徐倩, 冯青, 欧俊 , 等. 层层静电自组装构建载药种植体的研究[J]. 华西口腔医学杂志, 2014,32(6):537-541.
doi: 10.7518/hxkq.2014.06.002 |
Xu Q, Feng Q, Ou J , et al. Construction of drug-loaded titanium implants via layer-by-layer electro-static self-assembly[J]. West Chin J Stomatol, 2014,32(6):537-541.
doi: 10.7518/hxkq.2014.06.002 |
|
[15] |
Lyndon JA, Boyd BJ, Birbilis N . Metallic implant drug/device combinations for controlled drug release in orthopaedic applications[J]. J Control Release, 2014,179:63-75.
doi: 10.1016/j.jconrel.2014.01.026 pmid: 24512924 |
[16] |
Edupuganti OP, Antoci V Jr, King SB , et al. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization[J]. Bioorg Med Chem Lett, 2007,17(10):2692-2696.
doi: 10.1016/j.bmcl.2007.03.005 pmid: 17369042 |
[17] |
Nie B, Ao H, Zhou J , et al. Biofunctionalization of titanium with bacitracin immobilization shows po-tential for anti-bacteria, osteogenesis and reduction of macrophage inflammation[J]. Colloids Surf B Biointerfaces, 2016,145:728-739.
doi: 10.1016/j.colsurfb.2016.05.089 pmid: 27289314 |
[18] |
Walter MS, Frank MJ, Satué M , et al. Bioactive implant surface with electrochemically bound dox-ycycline promotes bone formation markers in vitro and in vivo[J]. Dent Mater, 2014,30(2):200-214.
doi: 10.1016/j.dental.2013.11.006 pmid: 24377939 |
[19] |
Godoy-Gallardo M, Mas-Moruno C, Yu K , et al. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: a comparison study between silanization and surface initiated polymerization[J]. Biomacromolecules, 2015,16(2):483-496.
doi: 10.1021/bm501528x pmid: 25545728 |
[20] |
Nie B, Long T, Li H , et al. A comparative analysis of antibacterial properties and inflammatory responses for the KR-12 peptide on titanium and PEGylated titanium surfaces[J]. RSC Adv, 2017, ( 55):34321-34330.
doi: 10.1039/C7RA05538B |
[21] |
Holmberg KV, Abdolhosseini M, Li Y , et al. Bio-inspired stable antimicrobial peptide coatings for dental applications[J]. Acta Biomater, 2013,9(9):8224-8231.
doi: 10.1016/j.actbio.2013.06.017 pmid: 3758876 |
[22] |
Tîlmaciu CM, Mathieu M, Lavigne JP , et al. In vitro and in vivo characterization of antibacterial activity and biocompatibility: a study on silver-containing phosphonate monolayers on titanium[J]. Acta Bio-mater, 2015,15:266-277.
doi: 10.1016/j.actbio.2014.12.020 pmid: 25562573 |
[23] |
Holinka J, Pilz M, Kubista B , et al. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth[J]. Bone Joint J, 2013,95-B(5):678-682.
doi: 10.1302/0301-620X.95B5.31216 pmid: 23632681 |
[24] |
D’Almeida M, Attik N, Amalric J , et al. Chitosan coating as an antibacterial surface for biomedical applications[J]. PLoS One, 2017,12(12):e0189537.
doi: 10.1371/journal.pone.0189537 pmid: 5728531 |
[25] |
Vaz JM, Michel EC, Chevallier P , et al. Covalent crafting of chitosan on plasma-treated polytetra-fluoroethylene surfaces for biomedical applications[J]. J Biomater Tiss Eng, 2014,4(11):915-924.
doi: 10.1166/jbt.2014.1262 |
[26] |
Alcheikh A, Pavon-Djavid G, Helary G , et al. Poly-NaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion[J]. J Mater Sci Mater Med, 2013,24(7):1745-1754.
doi: 10.1007/s10856-013-4932-3 pmid: 23625318 |
[27] |
Chouirfa H, Evans MDM, Bean P , et al. Grafting of bioactive polymers with various architectures: a versatile tool for preparing antibacterial infection and biocompatible surfaces[J]. ACS Appl Mater Interfaces, 2018,10(2):1480-1491.
doi: 10.1021/acsami.7b14283 pmid: 29266919 |
[28] |
Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC , et al. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bac-terial adhesion and biofilm formation[J]. Acta Biomater, 2014,10(8):3522-3534.
doi: 10.1016/j.actbio.2014.03.026 pmid: 24704699 |
[29] |
Lv H, Chen Z, Yang X , et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation[J]. J Dent, 2014,42(11):1464-1472.
doi: 10.1016/j.jdent.2014.06.003 pmid: 24930872 |
[30] |
Li M, Liu Q, Jia ZJ , et al. Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegra-tion functions[J]. J Mater Chem B, 2015,3(45):8796-8805.
doi: 10.1039/C5TB01597A |
[31] |
Kanitthamniyom P, Zhang Y . Application of polydo-pamine in biomedical microfluidic devices[J]. Micro-fluid Nanofluid, 2018,22:24.
doi: 10.1007/s10404-018-2044-6 |
[32] |
Raphel J, Holodniy M, Goodman SB , et al. Multi-functional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants[J]. Biomaterials, 2016,84:301-314.
doi: 10.1016/j.biomaterials.2016.01.016 pmid: 26851394 |
[33] |
Vaithilingam J, Kilsby S, Goodridge RD , et al. Im-mobilisation of an antibacterial drug to Ti6Al4V components fabricated using selective laser melting[J]. Appl Surf Sci, 2014,314:642-654.
doi: 10.1016/j.apsusc.2014.06.014 |
[34] |
Masters KS . Covalent growth factor immobilization strategies for tissue repair and regeneration[J]. Macromol Biosci, 2011,11(9):1149-1163.
doi: 10.1002/mabi.201000505 pmid: 21509937 |
[35] |
Gao G, Lange D, Hilpert K , et al. The biocompati-bility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides[J]. Biomaterials, 2011,32(16):3899-3909.
doi: 10.1016/j.biomaterials.2011.02.013 pmid: 21377727 |
[36] |
Riool M, de Breij A, Drijfhout JW , et al. Antimicro-bial peptides in biomedical device manufacturing[J]. Front Chem, 2017,5:63.
doi: 10.3389/fchem.2017.00063 pmid: 5609632 |
[37] |
Abdolhosseini M, Nandula SR, Song J , et al. Lysine substitutions convert a bacterial-agglutinating pe-ptide into a bactericidal peptide that retains anti-lipo-polysaccharide activity and low hemolytic activity[J]. Peptides, 2012,35(2):231-238.
doi: 10.1016/j.peptides.2012.03.017 pmid: 3356437 |
[38] |
Nijhuis AW, van den Beucken JJ, Boerman OC , et al. 1-step versus 2-step immobilization of alkaline pho-sphatase and bone morphogenetic protein-2 onto implant surfaces using polydopamine[J]. Tissue Eng Part C Methods, 2013,19(8):610-619.
doi: 10.1089/ten.tec.2012.0313 pmid: 3689932 |
[39] |
Hardy JG, Palma M, Wind SJ , et al. Responsive biomaterials: advances in materials based on shape-memory polymers[J]. Adv Mater, 2016,28(27):5717-5724.
doi: 10.1002/adma.201505417 pmid: 27120512 |
[40] |
Qin H, Cao H, Zhao Y , et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J]. Biomaterials, 2014,35(33):9114-9125.
doi: 10.1016/j.biomaterials.2014.07.040 pmid: 25112937 |
[41] |
Chen X, Zhou XC, Liu S , et al. In vivo osseointe-gration of dental implants with an antimicrobial peptide coating[J]. J Mater Sci Mater Med, 2017,28(5):76.
doi: 10.1007/s10856-017-5885-8 |
[42] |
Wang L, Chen J, Cai C , et al. Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocom-patibility[J]. J Mater Chem B, 2015,3(1):30-33.
doi: 10.1039/C4TB01318B |
[43] |
Hoyos-Nogués M, Velasco F, Ginebra MP , et al. Regenerating bone via multifunctional coatings: the blending of cell integration and bacterial inhibition properties on the surface of biomaterials[J]. ACS Appl Mater Interfaces, 2017,9(26):21618-21630.
doi: 10.1021/acsami.7b03127 pmid: 28594999 |
[1] | 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81. |
[2] | 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394. |
[3] | 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406. |
[4] | 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216. |
[5] | 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482. |
[6] | 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340. |
[7] | 陈亮,丁一,孟姝. 宿主调节治疗在牙周病治疗中的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 706-710. |
[8] | 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444. |
[9] | 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477. |
[10] | 蒋晓鸽,吴家馨,裴锡波. 金属-有机骨架及其复合材料在生物医学领域中的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 552-557. |
[11] | 冯瑾,吴红崑. 抗菌牙科材料在根面龋治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 475-480. |
[12] | 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521. |
[13] | 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533. |
[14] | 孟阳,王柳然,唐秋玲,丁小函,岳轶云,刘东宁,于维先. 荧光碳点在细菌成像及抗菌领域应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 566-570. |
[15] | 刘丹, 任彪, 程磊. 纳米银在口腔感染性疾病防治中的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 408-413. |
|