国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (1): 68-73.doi: 10.7518/gjkq.2024010

• 综述 • 上一篇    下一篇

线粒体自噬在牙周炎发生发展过程中的研究进展

古丽其合热·阿布来提(),秦旭,朱光勋()   

  1. 华中科技大学同济医学院附属同济医院口腔医学中心 华中科技大学同济医学院口腔医学院口腔颌面发育与再生湖北省重点实验室 武汉 430030
  • 收稿日期:2023-07-21 修回日期:2023-10-02 出版日期:2024-01-01 发布日期:2024-01-10
  • 通讯作者: 朱光勋
  • 作者简介:古丽其合热·阿布来提,硕士,Email:mirareads@163.com
  • 基金资助:
    国家自然科学基金(81300883);湖北省自然科学基金(2019CFB688)

Research progress of mitophagy in the onset and development of periodontal disease

Abulaiti Guliqihere(),Qin Xu,Zhu Guangxun()   

  1. Dept. of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology & School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology & Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
  • Received:2023-07-21 Revised:2023-10-02 Online:2024-01-01 Published:2024-01-10
  • Contact: Guangxun Zhu
  • Supported by:
    National Natural Science Foundation of China(81300883);Natural Science Foundation of Hubei Province(2019CFB688)

摘要:

牙周炎是一种由菌斑生物膜引起牙周支持组织破坏的慢性炎症性疾病,主要以牙龈炎症和牙槽骨进行性破坏为特征。线粒体自噬是通过自噬选择性清除细胞内功能失调或受损的线粒体来调节细胞内稳态的主要机制,在线粒体质量和数量控制中发挥关键作用。近年来有研究发现:线粒体自噬可以通过抑制牙周炎症反应、降低细胞凋亡、促进牙周韧带干细胞成骨分化等多种途径参与牙周病的发生和发展,为牙周病的治疗提供了有前景的治疗靶点。本文就线粒体自噬的分子机制及其在牙周病发生发展中的作用等方面的研究进展作一综述。

关键词: 牙周病, 线粒体自噬, 炎症, 细胞凋亡, 成骨分化

Abstract:

Periodontal disease is a chronic inflammatory disease leading to the destruction of periodontal tissues caused by dental plaque biofilm. It ischaracterized by gingival inflammation and progressive destruction of alveolar bone. Mitophagy is a major mechanism that regulates cellular homeostasis by selectively eliminating dysfunctional or damaged mitochondria through autophagy, which plays a critical role in the mitochondrial quality and quantity control. Recent studies indicated that mitophagy participates in the development of periodontal diseases by inhibiting periodontal inflammation, decreasing cell apoptosis, and promoting osteogenic differentiation in periodontal ligament stem cells. Moreover, it provides a promising therapeutic strategy for the treatment of periodontal disease. Therefore, this review summarizes the progress of research on the definition of mitophagy, its molecular mechanism, and the role of mitophagy in the onset and development of periodontal disease.

Key words: periodontal disease, mitophagy, inflammation, cell apoptosis, osteogenic differentiation

中图分类号: 

  • R781.4
1 Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging[J]. Rejuvenation Res, 2005, 8(1): 3-5.
2 Yao RQ, Ren C, Xia ZF, et al. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles[J]. Autophagy, 2021, 17(2): 385-401.
3 Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40(3): e104705.
4 Gustafsson ÅB, Dorn GW 2nd. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process[J]. Physiol Rev, 2019, 99(1): 853-892.
5 Liu L, Liao XD, Wu H, et al. Mitophagy and its contribution to metabolic and aging-associated disorders[J]. Antioxid Redox Signal, 2020, 32(12): 906-927.
6 Zhu CL, Yao RQ, Li LX, et al. Mechanism of mitophagy and its role in sepsis induced organ dysfunction: a review[J]. Front Cell Dev Biol, 2021, 9: 664896.
7 Liu BQ, Zhang J, Liu GJ, et al. Expression of PINK1 and Parkin in human apical periodontitis[J]. Int Endod J, 2022, 55(8): 870-881.
8 Yang CN, Kok SH, Wang HW, et al. Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy-related osteoblast apoptosis[J]. Int Endod J, 2019, 52(5): 676-688.
9 Kinane DF, Stathopoulou PG, Papapanou PN. Perio-dontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038.
10 Yoo SM, Jung YK. A molecular approach to mito-phagy and mitochondrial dynamics[J]. Mol Cells, 2018, 41(1): 18-26.
11 Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in Mitochondrial maintenance[J]. Curr Biol, 2018, 28(4): R170-R185.
12 Jin SM, Lazarou M, Wang CX, et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL[J]. J Cell Biol, 2010, 191(5): 933-942.
13 Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin[J]. Nature, 2014, 510(7503): 162-166.
14 Randow F, Youle RJ. Self and nonself: how auto-phagy targets mitochondria and bacteria[J]. Cell Host Microbe, 2014, 15(4): 403-411.
15 Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J]. Nature, 2015, 524(7565): 309-314.
16 Terešak P, Lapao A, Subic N, et al. Regulation of PRKN-independent mitophagy[J]. Autophagy, 2022, 18(1): 24-39.
17 Kuang Y, Ma KL, Zhou CQ, et al. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy[J]. Autophagy, 2016, 12(12): 2363-2373.
18 Chen G, Han Z, Feng D, et al. A regulatory signa-ling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy[J]. Mol Cell, 2014, 54(3): 362-377.
19 Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control[J]. Redox Biol, 2015, 4: 6-13.
20 Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria[J]. Cell Death Differ, 2013, 20(1): 31-42.
21 Otsu K, Murakawa T, Yamaguchi O. BCL2L13 is a mammalian homolog of the yeast mitophagy receptor Atg32[J]. Autophagy, 2015, 11(10): 1932-1933.
22 Shirane-Kitsuji M, Nakayama KI. Mitochondria: FKBP38 and mitochondrial degradation[J]. Int J Biochem Cell Biol, 2014, 51: 19-22.
23 Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease[J]. Periodontol 2000, 2020, 83(1): 14-25.
24 Jiang K, Li JW, Jiang LS, et al. PINK1-mediated mitophagy reduced inflammatory responses to Porphyromonas gingivalis in macrophages[J]. Oral Dis, 2022. doi:10.1111/odi.14286 .
doi: 10.1111/odi.14286
25 Li XC, Zhao Y, Peng HR, et al. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway[J]. Front Bioeng Biotechnol, 2022, 10: 1081977.
26 Zhai QM, Chen X, Fei DD, et al. Nanorepairers rescue inflammation-induced mitochondrial dysfunction in mesenchymal stem cells[J]. Adv Sci (Weinh), 2022, 9(4): e2103839.
27 Schofield JH, Schafer ZT. Mitochondrial reactive oxygen species and mitophagy: a complex and nuan-ced relationship[J]. Antioxid Redox Signal, 2021, 34(7): 517-530.
28 刘瑜, 李树锦, 张森林, 等. 牙龈卟啉单胞菌脂多糖促进牙龈成纤维细胞的自噬[J]. 细胞与分子免疫学杂志, 2017, 33(3): 315-319.
Liu Y, Li SJ, Zhang SL, et al. Lipopolysaccharide of Porphyromonas gingivalis promotes the autophagy of human gingival fibroblasts[J]. Chin J Cell Mol Immunol, 2017, 33(3): 315-319.
29 范智博, 金珂, 李胜鸿, 等. 饥饿条件下活性氧通过PINK1/Parkin通路调控人牙周膜细胞的线粒体自噬[J]. 华西口腔医学杂志, 2022, 40(6): 645-653.
Fan ZB, Jin K, Li SH, et al. Regulation of reactive oxygen species on the mitophagy of human perio-dontal ligament cells through the PINK1/Parkin pathway under starvation[J]. West China J Stomatol, 2022, 40(6): 645-653.
30 Hasturk H. Inflammation and periodontal regeneration[J]. Dent Clin North Am, 2022, 66(1): 39-51.
31 Fei DD, Xia YM, Zhai QM, et al. Exosomes regulate interclonal communication on osteogenic differen-tiation among heterogeneous osteogenic single-cell clones through PINK1/parkin-mediated mitophagy[J]. Front Cell Dev Biol, 2021, 9: 687258.
32 Lin L, Li S, Hu S, et al. UCHL1 impairs periodontal ligament stem cell osteogenesis in periodontitis[J]. J Dent Res, 2023, 102(1): 61-71.
33 Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death[J]. Biochem Biophys Res Commun, 2017, 482(3): 426-431.
34 Tunalı M, Ataoğlu T, Celik I. Apoptosis: an under-lying factor for accelerated periodontal disease associated with diabetes in rats[J]. Clin Oral Investig, 2014, 18(7): 1825-1833.
35 Zhu CH, Zhao Y, Pei DD, et al. PINK1 mediated mitophagy attenuates early apoptosis of gingival epithelial cells induced by high glucose[J]. BMC Oral Health, 2022, 22(1): 144.
36 Wang H, Jiang TY, Li W, et al. Resveratrol attenua-tes oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease[J]. Toxicol Lett, 2018, 282: 100-108.
37 Liu XH, Lu JD, Liu SQ, et al. Huangqi-Danshen decoction alleviates diabetic nephropathy in DB/DB mice by inhibiting PINK1/Parkin-mediated mitophagy[J]. Am J Transl Res, 2020, 12(3): 989-998.
38 Abudureyimu M, Yu WJ, Cao RY, et al. Berberine promotes cardiac function by upregulating PINK1/parkin-mediated mitophagy in heart failure[J]. Front Physiol, 2020, 11: 565751.
[1] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[2] 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462.
[3] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[4] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[5] 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126.
[6] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[7] 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36.
[8] 李伟光,吴亚菲,郭淑娟. 无机纳米粒子在牙周病诊疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 724-730.
[9] 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475.
[10] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[11] 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348.
[12] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
[13] 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26.
[14] 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93.
[15] 穆新月,刘树泰. 动机性访谈在牙周病患者临床管理中的应用进展[J]. 国际口腔医学杂志, 2022, 49(1): 94-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .