国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (1): 19-26.doi: 10.7518/gjkq.2022002

• 材料学专栏 • 上一篇    下一篇

牙髓再生支架材料的研究进展

周易(),赵玉鸣()   

  1. 北京大学口腔医院儿童口腔科 北京 100081
  • 收稿日期:2021-03-01 修回日期:2021-07-02 出版日期:2022-01-01 发布日期:2022-01-07
  • 通讯作者: 赵玉鸣
  • 作者简介:周易,住院医师,学士,Email: 2228674105@qq.com

Research progress on various dental pulp regeneration scaffolds

Zhou Yi(),Zhao Yuming()   

  1. Dept. of Pediatric Dentistry, School & Hospital of Stomatology, Peking University, Beijing 100081, China
  • Received:2021-03-01 Revised:2021-07-02 Online:2022-01-01 Published:2022-01-07
  • Contact: Yuming Zhao

摘要:

牙髓再生是一种治疗年轻恒牙牙髓感染或坏死的新技术。该方法能促进未发育完全的牙齿根尖孔闭合,使根管壁增厚且牙根增长。为提高牙髓再生的成功率,需有合适的支架提供三维空间位置定位并调节干细胞的分化、增殖或代谢。支架是牙髓再生的关键因素,目前已发现多种支架有应用于牙髓再生的潜力,它们来自生物提取或人工合成,各有优势。生物提取支架主要包括血凝块、富血小板血浆、富血小板纤维蛋白、多糖、胶原、丝、脱细胞细胞外基质等,人工合成支架主要包括聚合物、生物陶瓷及复合支架。本文对上述多种牙髓再生支架材料的性能和应用前景方面的进展作一综述。

关键词: 年轻恒牙, 炎症, 坏死, 牙髓再生, 支架材料

Abstract:

Pulp regeneration is a new treatment approach for pulp inflammation or necrosis of young permanent teeth and induces apical foramen closure, root canal wall thickening, and root length increase. To improve the success rate of dental pulp regeneration, suitable scaffolds are fundamental to provide proper three-dimensional space and regulate stem cell differentiation, proliferation, and metabolism. At present, many studies have shown that a variety of scaffolds have potential for pulp regeneration. These scaffolds originate from biological extraction or artificial synthesis, and each has its own advantages. Biological extraction scaffolds mainly include blood clot, platelet rich plasma, platelet rich fibrin, polysaccharides, collagen, silk, acellular extracellular matrix, etc. Synthetic scaffolds mainly include polymers, bioceramics and composite scaffolds. In this review, we searched the literature on dental pulp regeneration in the past fifteen years and summarized the research progress on the performance and application prospects of above-mentioned various dental pulp regeneration scaffolds.

Key words: young permanent teeth, inflammation, necrosis, pulp regeneration, scaffolds

[1] Nygaard-Östby B, Hjortdal O. Tissue formation in the root canal following pulp removal[J]. Eur J Oral Sci, 1971,79(3):333-349.
[2] Gong T, Heng BC, Lo EC, et al. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy[J]. Stem Cells Int, 2016,2016:9204574.
[3] Gathani KM, Raghavendra SS. Scaffolds in regenerative endodontics: a review[J]. Dent Res J (Isfahan), 2016,13(5):379-386.
[4] Alagl A, Bedi S, Hassan K, et al. Use of platelet-rich plasma for regeneration in non-vital immature permanent teeth: clinical and cone-beam computed tomography evaluation[J]. J Int Med Res, 2017,45(2):583-593.
[5] Bezgin T, Yilmaz AD, Celik BN, et al. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment[J]. J Endod, 2015,41(1):36-44.
[6] Jiang XJ, Liu H, Peng CF. Clinical and radiographic assessment of the efficacy of a collagen membrane in regenerative endodontics: a randomized, controlled clinical trial[J]. J Endod, 2017,43(9):1465-1471.
[7] Nagy MM, Tawfik HE, Hashem AA, et al. Regene-rative potential of immature permanent teeth with necrotic pulps after different regenerative protocols[J]. J Endod, 2014,40(2):192-198.
[8] Altaii M, Richards L, Rossi-Fedele G. Histological assessment of regenerative endodontic treatment in animal studies with different scaffolds: a systematic review[J]. Dent Traumatol, 2017,33(4):235-244.
[9] Jadhav G, Shah N, Logani A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: a pilot clinical study[J]. J Endod, 2012,38(12):1581-1587.
[10] Marx RE, Carlson ER, Eichstaedt RM, et al. Platelet-rich plasma: growth factor enhancement for bone grafts[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998,85(6):638-646.
[11] Schmitz JP, Hollinger JO. The biology of platelet-rich plasma[J]. J Oral Maxillofac Surg, 2001,59(9):1119-1121.
[12] He L, Lin Y, Hu X, et al. A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(5):707-713.
[13] Ulusoy AT, Turedi I, Cimen M, et al. Evaluation of blood clot, platelet-rich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: a prospective randomized trial[J]. J Endod, 2019,45(5):560-566.
[14] 李文静, 李浩渤, 刘从娜, 等. 不同生物活性支架治疗年轻恒牙再生牙髓活力的比较[J]. 中国组织工程研究, 2021,25(4):499-503.
Li WJ, Li HB, Liu CN, et al. Comparison of different bioactive scaffolds in the treatment of regenerative pulp of young permanent teeth[J]. Chin J Tissue Eng Res, 2021,25(4):499-503.
[15] Bakhtiar H, Esmaeili S, Fakhr Tabatabayi S, et al. Second-generation platelet concentrate (platelet-rich fibrin) as a scaffold in regenerative endodontics: a case series[J]. J Endod, 2017,43(3):401-408.
[16] Nagaveni NB, Pathak S, Poornima P, et al. Revascularization induced maturogenesis of non-vital immature permanent tooth using platelet-rich-fibrin: a case report[J]. J Clin Pediatr Dent, 2016,40(1):26-30.
[17] Ray HL Jr, Marcelino J, Braga R, et al. Long-term follow up of revascularization using platelet-rich fibrin[J]. Dent Traumatol, 2016,32(1):80-84.
[18] Kitamura C, Nishihara T, Terashita M, et al. Local regeneration of dentin-pulp complex using controlled release of fgf-2 and naturally derived sponge-like scaffolds[J]. Int J Dent, 2012,2012:190561.
[19] 雷鸣, 高丽娜, 陈发明, 等. 牙髓组织工程和再生中生物支架材料的进展[J]. 牙体牙髓牙周病学杂志, 2013,23(1):51-56.
Lei M, Gao LN, Chen FM, et al. Biomaterial scaffold in dental pulp tissue engineering and regeneration[J]. Chin J Conserv Dent, 2013,23(1):51-56.
[20] Palma PJ, Ramos JC, Martins JB, et al. Histologic evaluation of regenerative endodontic procedures wi-th the use of chitosan scaffolds in immature dog teeth with apical periodontitis[J]. J Endod, 2017,43(8):1279-1287.
[21] Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering[J]. Eur Polym J, 2013,49(4):780-792.
[22] Lambricht L, De Berdt P, Vanacker J, et al. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla[J]. Dent Mater, 2014,30(12):e349-e361.
[23] Martin DE, de Almeida JFA, Henry MA, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation[J]. J Endod, 2014,40(1):51-55.
[24] Inuyama Y, Kitamura C, Nishihara T, et al. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp[J]. J Biomed Mater Res Part B: Appl Biomater, 2010,92B(1):120-128.
[25] Ferroni L, Gardin C, Sivolella S, et al. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue[J]. Int J Mol Sci, 2015,16(3):4666-4681.
[26] Marler JJ, Guha A, Rowley J, et al. Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts[J]. Plast Reconstr Surg, 2000,105(6):2049-2058.
[27] Dobie K, Smith G, Sloan AJ, et al. Effects of alginate hydrogels and TGF-β1 on human dental pulp repair in vitro[J]. Connect Tissue Res, 2002,43(2/3):387-390.
[28] Verma P, Nosrat A, Kim JR, et al. Effect of residual bacteria on the outcome of pulp regeneration in vivo[J]. J Dent Res, 2017,96(1):100-106.
[29] 曹春玲, 杨聪翀, 屈小中, 等. 可注射羟乙基壳聚糖基水凝胶理化性能及其对人牙髓细胞增殖和成牙本质向分化的作用[J]. 北京大学学报(医学版), 2020,52(1):10-17.
Cao CL, Yang CC, Qu XZ, et al. Effects of the injectable glycol-chitosan based hydrogel on the proliferation and differentiation of human dental pulp cells[J]. J Peking Univ (Heal Sci), 2020,52(1):10-17.
[30] Xiao M, Qiu J, Kuang R, et al. Synergistic effects of stromal cell-derived factor-1α and bone morphogenetic protein-2 treatment on odontogenic differentiation of human stem cells from apical papilla cultured in the VitroGel 3D system[J]. Cell Tissue Res, 2019,378(2):207-220.
[31] Vaissiere G, Chevallay B, Herbage D, et al. Comparative analysis of different collagen-based biomaterials as scaffolds for long-term culture of human fibroblasts[J]. Med Biol Eng Comput, 2000,38(2):205-210.
[32] Sculean A, Schwarz F, Chiantella GC, et al. Five-year results of a prospective, randomized, controlled study evaluating treatment of intra-bony defects with a natural bone mineral and GTR[J]. J Clin Periodontol, 2007,34(1):72-77.
[33] Behring J, Junker R, Walboomers XF, et al. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review[J]. Odontology, 2008,96(1):1-11.
[34] Fahmy SH, Hassanien EES, Nagy MM, et al. Investigation of the regenerative potential of necrotic mature teeth following different revascularisation protocols[J]. Aust Endod J, 2017,43(2):73-82.
[35] de Lourdes Dotto Londero C, Pagliarin CML, Felippe MCS, et al. Histologic analysis of the influence of a gelatin-based scaffold in the repair of immature dog teeth subjected to regenerative endodontic treatment[J]. J Endod, 2015,41(10):1619-1625.
[36] Yamauchi N, Yamauchi S, Nagaoka H, et al. Tissue engineering strategies for immature teeth with apical periodontitis[J]. J Endod, 2011,37(3):390-397.
[37] Ozeki N, Hase N, Higuchi N, et al. Gelatin scaffold combined with bone morphogenetic protein-4 induces odontoblast-like cell differentiation involving integrin profile changes, autophagy-related gene 10, and Wnt5 sequentially in human induced pluripotent stem cells[J]. Differentiation, 2017,93:1-14.
[38] Srisuwan T, Tilkorn DJ, Al-Benna S, et al. Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells[J]. Dent Traumatol, 2013,29(2):84-91.
[39] Kwon YS, Lee SH, Hwang YC, et al. Behaviour of human dental pulp cells cultured in a collagen hydrogel scaffold cross-linked with cinnamaldehyde[J]. Int Endod J, 2017,50(1):58-66.
[40] El Ashry SH, Abu-Seida AM, Bayoumi AA, et al. Regenerative potential of immature permanent non-vital teeth following different dentin surface treatments[J]. Exp Toxicol Pathol, 2016,68(2/3):181-190.
[41] Park JY, Yang C, Jung IH, et al. Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds[J]. Biomater Res, 2015,19:7.
[42] Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo[J]. Biomaterials, 2005,26(2):147-155.
[43] Yang JW, Zhang YF, Sun ZY, et al. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds[J]. J Biomater Appl, 2015,30(2):221-229.
[44] Yoo YJ, Lee W, Cho YA, et al. Effect of conditioned medium from preameloblasts on regenerative cellular differentiation of the immature teeth with necrotic pulp and apical periodontitis[J]. J Endod, 2014,40(9):1355-1361.
[45] Dissanayaka WL, Zhu L, Hargreaves KM, et al. Scaffold-free prevascularized microtissue spheroids for pulp regeneration[J]. J Dent Res, 2014,93(12):1296-1303.
[46] 杨宁, 陈旭, 刘尧. 细胞外基质支架及其在牙髓再生中应用的研究进展[J]. 中国实用口腔科杂志, 2020,13(5):305-308.
Yang N, Chen X, Liu Y. Research progress in extracellular matrix scaffold and its application in dental pulp regeneration[J]. Chin J Pract Stomatol, 2020,13(5):305-308.
[47] Matoug-Elwerfelli M, Duggal MS, Nazzal H, et al. A biocompatible decellularized pulp scaffold for regenerative endodontics[J]. Int Endod J, 2018,51(6):663-673.
[48] Song JS, Takimoto K, Jeon M, et al. Decellularized human dental pulp as a scaffold for regenerative endodontics[J]. J Dent Res, 2017,96(6):640-646.
[49] Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues[J]. Ann Biomed Eng, 2004,32(1):148-159.
[50] Gotlieb EL, Murray PE, Namerow KN, et al. An ultrastructural investigation of tissue-engineered pulp constructs implanted within endodontically treated teeth[J]. J Am Dent Assoc, 2008,139(4):457-465.
[51] El-Backly RM, Massoud AG, El-Badry AM, et al. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits[J]. Aust Endod J, 2008,34(2):52-67.
[52] Cordeiro MM, Dong Z, Kaneko T, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth[J]. J Endod, 2008,34(8):962-969.
[53] Leong DJ, Setzer FC, Trope M, et al. Biocompatibility of two experimental scaffolds for regenerative endodontics[J]. Restor Dent Endod, 2016,41(2):98.
[54] Albuquerque MTP, Evans JD, Gregory RL, et al. Antibacterial TAP-mimic electrospun polymer scaffold: effects on P. gingivalis-infected dentin biofilm[J]. Clin Oral Invest, 2016,20(2):387-393.
[55] Althumairy RI, Teixeira FB, Diogenes A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla[J]. J Endod, 2014,40(4):521-525.
[56] Kamocki K, Nör JE, Bottino MC. Dental pulp stem cell responses to novel antibiotic-containing scaffol-ds for regenerative endodontics[J]. Int Endod J, 2015,48(12):1147-1156.
[57] Palasuk J, Kamocki K, Hippenmeyer L, et al. Bimix antimicrobial scaffolds for regenerative endodontics[J]. J Endod, 2014,40(11):1879-1884.
[58] Albuquerque MT, Valera MC, Moreira CS, et al. Effects of ciprofloxacin-containing scaffolds on Enterococcus faecalis biofilms[J]. J Endod, 2015,41(5):710-714.
[59] Albuquerque MTP, Ryan SJ, Münchow EA, et al. Antimicrobial effects of novel triple antibiotic paste-mimic scaffolds on Actinomyces naeslundii biofilm[J]. J Endod, 2015,41(8):1337-1343.
[60] Kamocki K, Nör JE, Bottino MC. Effects of ciprofloxacin-containing antimicrobial scaffolds on dental pulp stem cell viability: in vitro studies[J]. Arch Oral Biol, 2015,60(8):1131-1137.
[61] Qin W, Chen JY, Guo J, et al. Novel calcium phosphate cement with metformin-loaded chitosan for odontogenic differentiation of human dental pulp cells[J]. Stem Cells Int, 2018,2018:7173481.
[62] Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. PNAS, 2003,100(10):5807-5812.
[63] Goudouri OM, Theodosoglou E, Theocharidou A, et al. Magnesium based Sol-gel derived bioactive glass ceramics for dental tissue regeneration[J]. Key Eng Mater, 2011(493/494):884-889.
[64] Kushwaha M, Pan XL, Holloway JA, et al. Differentiation of human mesenchymal stem cells on niobium-doped fluorapatite glass-ceramics[J]. Dent Mater, 2012,28(3):252-260.
[65] Lim HC, Nam OH, Kim MJ, et al. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells throu-gh integrin/BMP/mTOR signaling pathways[J]. Int J Nanomedicine, 2016,11:2557-2567.
[66] Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants[J]. J Biomed Mater Res, 1997,38(2):105-114.
[67] Fu YC, Nie HM, Ho ML, et al. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2[J]. Biotechnol Bioeng, 2008,99(4):996-1006.
[68] Galler KM, Hartgerink JD, Cavender AC, et al. A customized self-assembling peptide hydrogel for dental pulp tissue engineering[J]. Tissue Eng Part A, 2012,18(1/2):176-184.
[69] Galler KM, Cavender A, Yuwono V, et al. Self-assembling peptide amphiphile nanofibers as a scaffold for dental stem cells[J]. Tissue Eng Part A, 2008,14(12):2051-2058.
[70] Kaushik SN, Kim B, Walma AM, et al. Biomimetic microenvironments for regenerative endodontics[J]. Biomater Res, 2016,20:14.
[71] Devillard R, Rémy M, Kalisky J, et al. In vitro assessment of a collagen/alginate composite scaffold for regenerative endodontics[J]. Int Endod J, 2017,50(1):48-57.
[72] Nevins AJ, Cymerman JJ. Revitalization of open apex teeth with apical periodontitis using a collagen-hydroxyapatite scaffold[J]. J Endod, 2015,41(6):966-973.
[73] Guo T, Li Y, Cao G, et al. Fluorapatite-modified scaffold on dental pulp stem cell mineralization[J]. J Dent Res, 2014,93(12):1290-1295.
[74] Bottino MC, Yassen GH, Platt JA, et al. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations[J]. J Tissue Eng Regen Med, 2015,9(11):E116-E123.
[1] 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73.
[2] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[3] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[4] 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462.
[5] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[6] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[7] 李转转,格根塔娜. 牙髓血运重建术和根尖诱导成形术疗效对比的Meta分析[J]. 国际口腔医学杂志, 2023, 50(2): 177-185.
[8] 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126.
[9] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[10] 陈小利,张帆,刘程程. 光生物调节在放射治疗后口腔并发症防治中的应用进展[J]. 国际口腔医学杂志, 2022, 49(6): 707-716.
[11] 李转转,格根塔娜. 牙髓血运重建术根管冲洗消毒药物的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 569-577.
[12] 戢晓,朱桂全. 维生素D与药物相关性颌骨坏死关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 441-447.
[13] 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475.
[14] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
[15] 覃思文,廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .