国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 263-271.doi: 10.7518/gjkq.2022029
Hong Yaya1(),Chen Xuepeng1,Si Misi2()
摘要:
牙槽骨缺损的再生治疗一直是口腔领域亟待攻克的难点。牙周组织工程技术的出现为解决牙槽骨缺损提供了新思路,其中良好的种子细胞是实现组织再生的关键要素。牙囊干细胞(DFSC)具有成骨分化潜能,且易于获取和保存,是极具开发前景的种子细胞。DFSC成骨分化过程涉及复杂的基因调控,其中非编码RNA(ncRNA)作为一类从DNA转录而来但不编码蛋白质的功能性RNA,已被证实可在表观遗传水平、转录水平及转录后水平参与调控干细胞成骨分化。探索ncRNA在DFSC成骨分化调控网络中的角色和作用机制,可为组织再生提供新的治疗策略。本文就DFSC成骨分化过程中微小RNA(miRNA)、长链非编码RNA(lncRNA)和环状RNA(circRNA)等各类ncRNA调控作用的研究进展作一综述。
中图分类号:
1 | Liu J, Ruan JP, Weir MD, et al. Periodontal bone-li-gament-cementum regeneration via scaffolds and stem cells[J]. Cells, 2019, 8(6): 537. |
2 | Xu XY, Li X, Wang J, et al. Concise review: perio-dontal tissue regeneration using stem cells: strategies and translational considerations[J]. Stem Cells Transl Med, 2019, 8(4): 392-403. |
3 | Zhang J, Ding H, Liu XF, et al. Dental follicle stem cells: tissue engineering and immunomodulation[J]. Stem Cells Dev, 2019, 28(15): 986-994. |
4 | Zhou T, Pan JH, Wu PY, et al. Dental follicle cells: roles in development and beyond[J]. Stem Cells Int, 2019, 2019: 9159605. |
5 | Tamaki Y, Nakahara T, Ishikawa H, et al. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow[J]. Odontology, 2013, 101(2): 121-132. |
6 | Yildirim S, Zibandeh N, Genc D, et al. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles[J]. Stem Cells Int, 2016, 2016: 4682875. |
7 | Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning[J]. Adv Exp Med Biol, 2016, 937: 3-17. |
8 | Sun Y, Yu QC, Li L, et al. Single-cell RNA profiling links ncRNAs to spatiotemporal gene expression during C. elegans embryogenesis[J]. Sci Rep, 2020, 10(1): 18863. |
9 | Subhramanyam CS, Hu QD. Non-coding RNA in brain development and disorder[J]. Curr Med Chem, 2017, 24(18): 1983-1997. |
10 | Leimena C, Qiu HY. Non-coding RNA in the pathogenesis, progression and treatment of hypertension[J]. Int J Mol Sci, 2018, 19(4): E927. |
11 | Esteller M. Non-coding RNAs in human disease[J]. Nat Rev Genet, 2011, 12(12): 861-874. |
12 | Kim SS, Lee SV. Non-coding RNAs in Caenorhabditis elegans aging[J]. Mol Cells, 2019, 42(5): 379-385. |
13 | Fico A, Fiorenzano A, Pascale E, et al. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation[J]. Cell Mol Life Sci, 2019, 76(8): 1459-1471. |
14 | Yi R, Fuchs E. microRNAs and their roles in mammalian stem cells[J]. J Cell Sci, 2011, 124(Pt 11): 1775-1783. |
15 | Chew CL, Conos SA, Unal B, et al. Noncoding RNAs: master regulators of inflammatory signaling[J]. Trends Mol Med, 2018, 24(1): 66-84. |
16 | Cáceres-Durán MÁ, Ribeiro-Dos-Santos Â, Vidal AF. Roles and mechanisms of the long noncoding RNAs in cervical cancer[J]. Int J Mol Sci, 2020, 21(24): E9742. |
17 | Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. |
18 | Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906. |
19 | Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9): 597-610. |
20 | Liang HW, Gong F, Zhang SY, et al. The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids[J]. Wiley Interdiscip Rev RNA, 2014, 5(2): 285-300. |
21 | Rojas-Feria M, Romero-García T, Fernández Caballero-Rico JÁ, et al. Modulation of faecal metagenome in Crohn’s disease: role of microRNAs as biomarkers[J]. World J Gastroenterol, 2018, 24(46): 5223-5233. |
22 | Wang YM, Medvid R, Melton C, et al. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal[J]. Nat Genet, 2007, 39(3): 380-385. |
23 | Peng SP, Cao LH, He SW, et al. An overview of long noncoding RNAs involved in bone regeneration from mesenchymal stem cells[J]. Stem Cells Int, 2018, 2018: 8273648. |
24 | Xu JY, Bai J, Zhang XX, et al. A comprehensive overview of lncRNA annotation resources[J]. Brief Bioinform, 2017, 18(2): 236-249. |
25 | Sun H, Peng GX, Ning X, et al. Emerging roles of long noncoding RNA in chondrogenesis, osteogenesis, and osteoarthritis[J]. Am J Transl Res, 2019, 11(1): 16-30. |
26 | Chen LL. Linking long noncoding RNA localization and function[J]. Trends Biochem Sci, 2016, 41(9): 761-772. |
27 | Ju C, Liu RF, Zhang YW, et al. Mesenchymal stem cell-associated lncRNA in osteogenic differentiation[J]. Biomed Pharmacother, 2019, 115: 108912. |
28 | Yang QL, Jia LF, Li XB, et al. Long noncoding RNAs: new players in the osteogenic differentiation of bone marrow-and adipose-derived mesenchymal stem cells[J]. Stem Cell Rev Rep, 2018, 14(3): 297-308. |
29 | Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118. |
30 | Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA mo-lecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856. |
31 | Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. |
32 | Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870-885. |
33 | Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation[J]. J Biomed Sci, 2019, 26(1): 29. |
34 | Huang XQ, Cen X, Zhang B, et al. The roles of circRFWD2 and circINO80 during NELL-1-induced osteogenesis[J]. J Cell Mol Med, 2019, 23(12): 8432-8441. |
35 | Li JQ, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-480. |
36 | Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth[J]. Matrix Biol, 2005, 24(2): 155-165. |
37 | Chen XP, Li SY, Zeng ZB, et al. Notch1 signalling inhibits apoptosis of human dental follicle stem cells via both the cytoplasmic mitochondrial pathway and nuclear transcription regulation[J]. Int J Biochem Cell Biol, 2017, 82: 18-27. |
38 | Lima RL, Holanda-Afonso RC, Moura-Neto V, et al. Human dental follicle cells express embryonic, mesenchymal and neural stem cells markers[J]. Arch Oral Biol, 2017, 73: 121-128. |
39 | Sowmya S, Chennazhi KP, Arzate H, et al. Periodontal specific differentiation of dental follicle stem cells into osteoblast, fibroblast, and cementoblast[J]. Tissue Eng Part C Methods, 2015, 21(10): 1044-1058. |
40 | Rezai-Rad M, Bova JF, Orooji M, et al. Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects[J]. Cytotherapy, 2015, 17(11): 1572-1581. |
41 | Nie L, Yang X, Duan L, et al. The healing of alveolar bone defects with novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds[J]. Sci Rep, 2017, 7(1): 6373. |
42 | Guo SJ, Kang J, Ji BH, et al. Periodontal-derived mesenchymal cell sheets promote periodontal rege-neration in inflammatory microenvironment[J]. Tissue Eng Part A, 2017, 23(13/14): 585-596. |
43 | Luan XH, Ito Y, Dangaria S, et al. Dental follicle progenitor cell heterogeneity in the developing mouse periodontium[J]. Stem Cells Dev, 2006, 15(4): 595-608. |
44 | Bok JS, Byun SH, Park BW, et al. The role of human umbilical vein endothelial cells in osteogenic differentiation of dental follicle-derived stem cells in in vitro co-cultures[J]. Int J Med Sci, 2018, 15(11): 1160-1170. |
45 | Guo YW, Guo WH, Chen J, et al. Are Hertwig’s e-pithelial root sheath cells necessary for periodontal formation by dental follicle cells[J]. Arch Oral Biol, 2018, 94: 1-9. |
46 | Li CH, Yang X, He YJ, et al. Bone morphogenetic protein-9 induces osteogenic differentiation of rat dental follicle stem cells in P38 and ERK1/2 MAPK dependent manner[J]. Int J Med Sci, 2012, 9(10): 862-871. |
47 | Yao SM, He HZ, Gutierrez DL, et al. Expression of bone morphogenetic protein-6 in dental follicle stem cells and its effect on osteogenic differentiation[J]. Cells Tissues Organs, 2013, 198(6): 438-447. |
48 | Yao SM, Li CH, Beckley M, et al. Expression of odontogenic ameloblast-associated protein in the dental follicle and its role in osteogenic differentiation of dental follicle stem cells[J]. Arch Oral Biol, 2017, 78: 6-12. |
49 | Rezai Rad M, Liu DW, He HZ, et al. The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs)[J]. Arch Oral Biol, 2015, 60(4): 546-556. |
50 | Chen CC, Zhang JY, Ling JQ, et al. Nkd2 promotes the differentiation of dental follicle stem/progenitor cells into osteoblasts[J]. Int J Mol Med, 2018, 42(5): 2403-2414. |
51 | Klingelhöffer C, Codrin C, Ettl T, et al. miRNA-101 supports the osteogenic differentiation in human dental follicle cells[J]. Arch Oral Biol, 2016, 72: 47-50. |
52 | Tomoki R, Ogura N, Takahashi K, et al. microRNA-29 family suppresses mineralization in dental follicle cells[J]. J Hard Tissue Biol, 2015, 24(1): 23-28. |
53 | Chen P, Wei DX, Xie BY, et al. Effect and possible mechanism of network between microRNAs and RUNX2 gene on human dental follicle cells[J]. J Cell Biochem, 2014, 115(2): 340-348. |
54 | 左婕, 王智亨, 盛丽, 等. miR-335对牙囊干细胞成骨分化能力的影响[J]. 口腔医学, 2018, 38(12): 1074-1078. |
Zuo J, Wang ZH, Sheng L, et al. The effects of miR-335 on the osteogenic differentiation potential of the DFSCs[J]. Stomatology, 2018, 38(12): 1074-1078. | |
55 | 王智亨, 左婕, 王梦琪, 等. miR-214抑制牙囊细胞成骨分化的体外研究[J]. 口腔疾病防治, 2020, 28(3): 146-152. |
Wang ZH, Zuo J, Wang MQ, et al. miR-214 inhibits the osteogenic differentiation of dental follicle cells in vitro[J]. J Prev Treat Stomatol Dis, 2020, 28(3): 146-152. | |
56 | Ito K, Tomoki R, Ogura N, et al. microRNA-204 regulates osteogenic induction in dental follicle cells[J]. J Dent Sci, 2020, 15(4): 457-465. |
57 | Deng LD, Hong H, Zhang XQ, et al. Down-regula-ted lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway[J]. Biochem Biophys Res Commun, 2018, 503(3): 2061-2067. |
58 | Chen ZY, Zheng JX, Hong H, et al. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro[J]. J Cell Physiol, 2020, 235(11): 8507-8519. |
59 | Du Y, Li J, Hou YL, et al. Alteration of circular RNA expression in rat dental follicle cells during osteogenic differentiation[J]. J Cell Biochem, 2019, 120(8): 13289-13301. |
60 | Ogura N, Takahashi K, Iwai S, et al. Comparative analysis of microRNA-mRNA expression profiles of mesenchymal stem cells and dental follicle cells[J]. Int J Oral Med Sci, 2012, 11(1): 13-21. |
61 | Luzi E, Marini F, Sala SC, et al. Osteogenic diffe-rentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor[J]. J Bone Miner Res, 2008, 23(2): 287-295. |
62 | Mizuno Y, Yagi K, Tokuzawa Y, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation[J]. Biochem Biophys Res Commun, 2008, 368(2): 267-272. |
63 | Zhang JF, Fu WM, He ML, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling[J]. RNA Biol, 2011, 8(5): 829-838. |
64 | Su X, Liao L, Shuai Y, et al. miR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway[J]. Cell Death Dis, 2015, 6: e1851. |
65 | Croft L, Szklarczyk D, Jensen LJ, et al. Multiple independent analyses reveal only transcription factors as an enriched functional class associated with microRNAs[J]. BMC Syst Biol, 2012, 6: 90. |
66 | Zhu J, Shimizu E, Zhang XR, et al. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix[J]. J Cell Biochem, 2011, 112(7): 1749-1760. |
67 | Tomé M, López-Romero P, Albo C, et al. miR-335 orchestrates cell proliferation, migration and diffe-rentiation in human mesenchymal stem cells[J]. Cell Death Differ, 2011, 18(6): 985-995. |
[1] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[2] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[3] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[4] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[5] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[6] | 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36. |
[7] | 郭雨婷,吕学超. 药物调控牙髓干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 737-744. |
[8] | 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527. |
[9] | 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660. |
[10] | 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615. |
[11] | 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262. |
[12] | 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145. |
[13] | 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31. |
[14] | 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83. |
[15] | 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679. |
|