国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 349-355.doi: 10.7518/gjkq.2022051

• 综述 • 上一篇    下一篇

微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制

钱素婷(),丁玲敏,纪雅宁,林军()   

  1. 浙江大学医学院附属第一医院口腔科 杭州 310003
  • 收稿日期:2021-07-06 修回日期:2021-12-21 出版日期:2022-05-01 发布日期:2022-05-09
  • 通讯作者: 林军
  • 作者简介:钱素婷,医师,硕士,Email:1176917636@qq.com
  • 基金资助:
    国家自然科学基金(81970978)

Differential expression of microRNA in gingival crevicular fluid of periodontitis and its regulatory mechanism on periodontitis

Qian Suting(),Ding Lingmin,Ji Yaning,Lin Jun.()   

  1. Dept. of Stomatology, The First Affiliated Hospital, Zhe-jiang University School of Medicine, Hangzhou 310003, China
  • Received:2021-07-06 Revised:2021-12-21 Online:2022-05-01 Published:2022-05-09
  • Contact: Jun. Lin
  • Supported by:
    National Natural Science Foundation of China(81970978)

摘要:

牙周炎是一种以牙周袋形成和牙槽骨吸收为特征的炎症性疾病,是40岁以上成人牙齿脱落的主要原因之一。牙周组织产生的龈沟液可以一定程度的揭示牙周的状态,其中的微小RNA(miRNA)的表达水平会根据牙周炎症的发展发生改变,可以作为牙周诊断的指标之一。miR-146a及miR-223是牙周炎进展中表达水平显著变化的miRNA,它们是目前利用龈沟液miRNA对牙周炎诊断最有潜力的生物标志物。不同miRNA可以通过调控牙周炎信号通路的不同阶段发挥作用,如通过细菌脂多糖与Toll样受体的结合、核因子κB配体信号通路及炎症因子的释放等过程调控牙周炎症进程。本文就牙周炎龈沟液中miRNA的表达差异及调控机制作一综述,以期为龈沟液miRNA准确诊断牙周炎提供新思路和新进展。

关键词: 龈沟液, 微小RNA, 牙周炎, Toll样受体, 核因子κB配体

Abstract:

Periodontitis is an inflammatory disease characterised by the formation of periodontal pocket and the resorption of alveolar bone. It is the main cause of tooth loss in adults over 40 years old. The gingival crevicular fluid produced by the periodontal tissue can reflect the state of periodontal inflammation to a certain extent, and the expression level of microRNA (miRNA) in it changes according to the progression of periodontal inflammation, which can be used as an indicator of periodontal diagnosis. The expression levels of miR-146a and miR-223 can be altered significantly during perio-dontitis progression. They are currently the most potential biomarkers periodontitis diagnosis by using miRNA in gingival crevicular fluid. Different miRNAs can play different roles by regulating the different stages of the periodontitis signalling pathway, such as the binding of bacterial lipopolysaccharide and Toll-like receptor, nuclear factor-κB ligand signalling pathway, and the release of inflammatory factors. This review elaborates the expression differences and modulation mechanisms of miRNA in periodontitis gingival crevicular fluid with a view to offer novel insights and strategies for the accurate diagnosis of periodontitis by miRNA in gingival crevicular fluid.

Key words: gingival crevicular fluid, microRNA, periodontitis, Toll-like receptor, nuclear factor-κB ligand

中图分类号: 

  • R 781.4

图 1

miRNA的牙周炎调控信号通路"

1 Cardoso EM, Reis C, Manzanares-Céspedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases[J]. Post-grad Med, 2018, 130(1): 98-104.
2 Nisha KJ, Janam P, Harshakumar K. Identifying salivary transcriptome signatures for periodontal diagnosis[J]. J Nat Sci Biol Med, 2019, 10(2): 114-118.
3 He W, You M, Wan W, et al. Point-of-care periodontitis testing: biomarkers, current technologies, and perspectives[J]. Trends Biotechnol, 2018, 36(11): 1127-1144.
4 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
Guo SJ, Liu Q, Ding Y. A brief introduction of the new classification scheme for periodontal and peri-implant diseases and conditions[J]. Int J Stomatol, 2019, 46(2): 125-134.
5 Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis[J]. J Immunol Res, 2015, 2015: 615486.
6 Antezack A, Chaudet H, Tissot-Dupont H, et al. Rapid diagnosis of periodontitis, a feasibility study using MALDI-TOF mass spectrometry[J]. PLoS One, 2020, 15(3): e0230334.
7 Verhulst MJL, Teeuw WJ, Bizzarro S, et al. A rapid, non-invasive tool for periodontitis screening in a medical care setting[J]. BMC Oral Health, 2019, 19(1): 87.
8 Arias-Bujanda N, Regueira-Iglesias A, Balsa-Castro C, et al. Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: a systema-tic review and meta-analysis[J]. J Clin Periodontol, 2020, 47(1): 2-18.
9 Zhang Y, Kang N, Xue F, et al. Evaluation of salivary biomarkers for the diagnosis of periodontitis[J]. BMC Oral Health, 2021, 21(1): 266.
10 Yi J, Shen Y, Yang Y, et al. Direct MALDI-TOF profiling of gingival crevicular fluid sediments for pe-riodontitis diagnosis[J]. Talanta, 2021, 225: 121956.
11 Szafranski SP, Wos-Oxley ML, Vilchez-Vargas R, et al. High-resolution taxonomic profiling of the subgingival microbiome for biomarker discovery and periodontitis diagnosis[J]. Appl Environ Microbiol, 2015, 81(3): 1047-1058.
12 Arias-Bujanda N, Regueira-Iglesias A, Balsa-Castro C, et al. Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: a systema-tic review and meta-analysis[J]. J Clin Periodontol, 2020, 47(1): 2-18.
13 Santonocito S, Polizzi A, Palazzo G, et al. The emerging role of microRNA in periodontitis: pathophysiology, clinical potential and future molecular perspectives[J]. Int J Mol Sci, 2021, 22(11): 5456.
14 Rovas A, Puriene A, Snipaitiene K, et al. Analysis of periodontitis-associated miRNAs in gingival tissue, gingival crevicular fluid, saliva and blood plasma[J]. Arch Oral Biol, 2021, 126: 105125.
15 Lee RC, Feinbaum RL, Ambros V. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14”[J]. Cell, 1993, 75(5): 843-854.
16 Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906.
17 Yin Y, Yang W, Zhang L, et al. Long non-coding RNA ANRIL and its target microRNAs (microRNA-34a, microRNA-125a and microRNA-186) relate to risk stratification and prognosis in multiple myeloma[J]. Hematology, 2021, 26(1): 160-169.
18 Luan X, Zhou X, Trombetta-eSilva J, et al. micro-RNAs and periodontal homeostasis[J]. J Dent Res, 2017, 96(5): 491-500.
19 Radović N, Nikolić Jakoba N, Petrović N, et al. microRNA-146a and microRNA-155 as novel crevicular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients[J]. J Clin Periodontol, 2018, 45(6): 663-671.
20 Luan X, Zhou X, Naqvi A, et al. microRNAs and immunity in periodontal health and disease[J]. Int J Oral Sci, 2018, 10(3): 24.
21 De Guire V, Robitaille R, Tétreault N, et al. Circula-ting miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges[J]. Clin Biochem, 2013, 46(10/11): 846-860.
22 Jin SH, Zhou JG, Guan XY, et al. Development of an miRNA-array-based diagnostic signature for pe-riodontitis[J]. Front Genet, 2020, 11: 577585.
23 Brill N, Krasse B. The passage of tissue fluid into the clinically healthy gingival pocket[J]. Acta Odontol Scand, 1958, 16(3): 233-245.
24 Chambers DA, Crawford JM, Mukherjee S, et al. Aspartate aminotransferase increases in crevicular fluid during experimental periodontitis in beagle dogs[J]. J Periodontol, 1984, 55(9): 526-530.
25 Socransky SS, Haffajee AD, Goodson JM, et al. New concepts of destructive periodontal disease[J]. J Clin Periodontol, 1984, 11(1): 21-32.
26 陈崇崇, 钟良军. 龈沟液生物标志物在慢性牙周炎诊疗中的研究进展[J]. 口腔医学, 2019, 39(11): 1047-1052.
Chen CC, Zhong LJ. Research progress of gingival crevicular fluid biomarkers for diagnosis and treatment of chronic periodontitis[J]. Stomatology, 2019, 39(11): 1047-1052.
27 Becerik S, Öztürk VÖ, Atmaca H, et al. Gingival crevicular fluid and plasma acute-phase cytokine levels in different periodontal diseases[J]. J Perio-dontol, 2012, 83(10): 1304-1313.
28 Ghallab NA. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: review of the current evidence[J]. Arch Oral Biol, 2018, 87: 115-124.
29 Elazazy O, Amr K, Abd El Fattah A, et al. Evaluation of serum and gingival crevicular fluid micro-RNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2[J]. Arch Oral Biol, 2021, 121: 104949.
30 Khurshid Z, Warsi I, Moin SF, et al. Biochemical analysis of oral fluids for disease detection[J]. Adv Clin Chem, 2021, 100: 205-253.
31 Na HS, Park MH, Song YR, et al. Elevated micro-RNA-128 in periodontitis mitigates tumor necrosis factor-α response via p38 signaling pathway in ma-crophages[J]. J Periodontol, 2016, 87(9): e173-e182.
32 Xie YF, Shu R, Jiang SY, et al. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues[J]. Int J Oral Sci, 2011, 3(3): 125-134.
33 Ghotloo S, Motedayyen H, Amani D, et al. Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity[J]. J Periodontal Res, 2019, 54(1): 27-32.
34 Saito A, Horie M, Ejiri K, et al. microRNA profiling in gingival crevicular fluid of periodontitis-a pilot study[J]. FEBS Open Bio, 2017, 7(7): 981-994.
35 Micó-Martínez P, García-Giménez JL, Seco-Cervera M, et al. MiR-1226 detection in GCF as potential biomarker of chronic periodontitis: a pilot study[J]. Med Oral Patol Oral Cir Bucal, 2018, 23(3): e308-e314.
36 Zhang Y, Li S, Yuan S, et al. microRNA-23a inhi-bits osteogenesis of periodontal mesenchymal stem cells by targeting bone morphogenetic protein signaling[J]. Arch Oral Biol, 2019, 102: 93-100.
37 Lamster IB, Ahlo JK. Analysis of gingival crevicular fluid as applied to the diagnosis of oral and systemic diseases[J]. Ann N Y Acad Sci, 2007, 1098: 216-229.
38 Lin W, Xiong L, Yang Z, et al. Severe periodontitis is associated with early-onset poststroke depression status[J]. J Stroke Cerebrovasc Dis, 2019, 28(12): 104413.
39 Gomes-Filho IS, Balinha IDSCE, da Cruz SS, et al. Moderate and severe periodontitis are positively associated with metabolic syndrome[J]. Clin Oral Investig, 2021, 25(6): 3719-3727.
40 Cho DH, Song IS, Choi J, et al. Risk of peripheral arterial disease in patients with periodontitis: a nationwide, population-based, matched cohort study[J]. Atherosclerosis, 2020, 297: 96-101.
41 Al-Rawi NH, Al-Marzooq F, Al-Nuaimi AS, et al. Salivary microRNA 155, 146a/b and 203: a pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus[J]. PLoS One, 2020, 15(8): e0237004.
42 Su N, Teeuw WJ, Loos BG, et al. Development and validation of a screening model for diabetes mellitus in patients with periodontitis in dental settings[J]. Clin Oral Investig, 2020, 24(11): 4089-4100.
43 Asa’ad F, Garaicoa-Pazmiño C, Dahlin C, et al. Expression of microRNAs in periodontal and peri-implant diseases: a systematic review and meta-analysis[J]. Int J Mol Sci, 2020, 21(11): 4147.
44 Cekici A, Kantarci A, Hasturk H, et al. Inflammatory and immune pathways in the pathogenesis of pe-riodontal disease[J]. Periodontol 2000, 2014, 64(1): 57-80.
45 Ramadan DE, Hariyani N, Indrawati R, et al. Cytokines and chemokines in periodontitis[J]. Eur J Dent, 2020, 14(3): 483-495.
46 Zhang T, Wu J, Ungvijanpunya N, et al. Smad6 methylation represses NFκB activation and perio-dontal inflammation[J]. J Dent Res, 2018, 97(7): 810-819.
47 Du A, Zhao S, Wan L, et al. microRNA expression profile of human periodontal ligament cells under the influence of Porphyromonas gingivalis LPS[J]. J Cell Mol Med, 2016, 20(7): 1329-1338.
48 Jiang SY, Xue D, Xie YF, et al. The negative feedback regulation of microRNA-146a in human perio-dontal ligament cells after Porphyromonas gingivalis lipopolysaccharide stimulation[J]. Inflamm Res, 2015, 64(6): 441-451.
49 Moffatt CE, Lamont RJ. Porphyromonas gingivalis induction of microRNA-203 expression controls su-ppressor of cytokine signaling 3 in gingival epithelial cells[J]. Infect Immun, 2011, 79(7): 2632-2637.
50 Kajiya M, Giro G, Taubman MA, et al. Role of pe-riodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease[J]. J Oral Microbiol, 2010, 2(1): 5532.
51 Noh MK, Jung M, Kim SH, et al. Assessment of IL 6, IL 8 and TNF α levels in the gingival tissue of patients with periodontitis[J]. Exp Ther Med, 2013, 6(3): 847-851.
52 Song B, Zhang YL, Chen LJ, et al. The role of Toll-like receptors in periodontitis[J]. Oral Dis, 2017, 23(2): 168-180.
53 Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384.
54 胡竹林, 赵诣, 李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
Hu ZL, Zhao Y, Li Y. Analysis status and clinical application prospect of biomarkers in oral gingival crevicular fluid[J]. Int J Stomatol, 2019, 46(3): 308-315.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[3] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[4] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[5] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[6] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[7] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[8] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[9] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[10] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[11] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[12] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[13] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[14] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[15] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .