国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 349-355.doi: 10.7518/gjkq.2022051
Qian Suting(),Ding Lingmin,Ji Yaning,Lin Jun.()
摘要:
牙周炎是一种以牙周袋形成和牙槽骨吸收为特征的炎症性疾病,是40岁以上成人牙齿脱落的主要原因之一。牙周组织产生的龈沟液可以一定程度的揭示牙周的状态,其中的微小RNA(miRNA)的表达水平会根据牙周炎症的发展发生改变,可以作为牙周诊断的指标之一。miR-146a及miR-223是牙周炎进展中表达水平显著变化的miRNA,它们是目前利用龈沟液miRNA对牙周炎诊断最有潜力的生物标志物。不同miRNA可以通过调控牙周炎信号通路的不同阶段发挥作用,如通过细菌脂多糖与Toll样受体的结合、核因子κB配体信号通路及炎症因子的释放等过程调控牙周炎症进程。本文就牙周炎龈沟液中miRNA的表达差异及调控机制作一综述,以期为龈沟液miRNA准确诊断牙周炎提供新思路和新进展。
中图分类号:
1 | Cardoso EM, Reis C, Manzanares-Céspedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases[J]. Post-grad Med, 2018, 130(1): 98-104. |
2 | Nisha KJ, Janam P, Harshakumar K. Identifying salivary transcriptome signatures for periodontal diagnosis[J]. J Nat Sci Biol Med, 2019, 10(2): 114-118. |
3 | He W, You M, Wan W, et al. Point-of-care periodontitis testing: biomarkers, current technologies, and perspectives[J]. Trends Biotechnol, 2018, 36(11): 1127-1144. |
4 | 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134. |
Guo SJ, Liu Q, Ding Y. A brief introduction of the new classification scheme for periodontal and peri-implant diseases and conditions[J]. Int J Stomatol, 2019, 46(2): 125-134. | |
5 | Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis[J]. J Immunol Res, 2015, 2015: 615486. |
6 | Antezack A, Chaudet H, Tissot-Dupont H, et al. Rapid diagnosis of periodontitis, a feasibility study using MALDI-TOF mass spectrometry[J]. PLoS One, 2020, 15(3): e0230334. |
7 | Verhulst MJL, Teeuw WJ, Bizzarro S, et al. A rapid, non-invasive tool for periodontitis screening in a medical care setting[J]. BMC Oral Health, 2019, 19(1): 87. |
8 | Arias-Bujanda N, Regueira-Iglesias A, Balsa-Castro C, et al. Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: a systema-tic review and meta-analysis[J]. J Clin Periodontol, 2020, 47(1): 2-18. |
9 | Zhang Y, Kang N, Xue F, et al. Evaluation of salivary biomarkers for the diagnosis of periodontitis[J]. BMC Oral Health, 2021, 21(1): 266. |
10 | Yi J, Shen Y, Yang Y, et al. Direct MALDI-TOF profiling of gingival crevicular fluid sediments for pe-riodontitis diagnosis[J]. Talanta, 2021, 225: 121956. |
11 | Szafranski SP, Wos-Oxley ML, Vilchez-Vargas R, et al. High-resolution taxonomic profiling of the subgingival microbiome for biomarker discovery and periodontitis diagnosis[J]. Appl Environ Microbiol, 2015, 81(3): 1047-1058. |
12 | Arias-Bujanda N, Regueira-Iglesias A, Balsa-Castro C, et al. Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: a systema-tic review and meta-analysis[J]. J Clin Periodontol, 2020, 47(1): 2-18. |
13 | Santonocito S, Polizzi A, Palazzo G, et al. The emerging role of microRNA in periodontitis: pathophysiology, clinical potential and future molecular perspectives[J]. Int J Mol Sci, 2021, 22(11): 5456. |
14 | Rovas A, Puriene A, Snipaitiene K, et al. Analysis of periodontitis-associated miRNAs in gingival tissue, gingival crevicular fluid, saliva and blood plasma[J]. Arch Oral Biol, 2021, 126: 105125. |
15 | Lee RC, Feinbaum RL, Ambros V. The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14”[J]. Cell, 1993, 75(5): 843-854. |
16 | Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906. |
17 | Yin Y, Yang W, Zhang L, et al. Long non-coding RNA ANRIL and its target microRNAs (microRNA-34a, microRNA-125a and microRNA-186) relate to risk stratification and prognosis in multiple myeloma[J]. Hematology, 2021, 26(1): 160-169. |
18 | Luan X, Zhou X, Trombetta-eSilva J, et al. micro-RNAs and periodontal homeostasis[J]. J Dent Res, 2017, 96(5): 491-500. |
19 | Radović N, Nikolić Jakoba N, Petrović N, et al. microRNA-146a and microRNA-155 as novel crevicular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients[J]. J Clin Periodontol, 2018, 45(6): 663-671. |
20 | Luan X, Zhou X, Naqvi A, et al. microRNAs and immunity in periodontal health and disease[J]. Int J Oral Sci, 2018, 10(3): 24. |
21 | De Guire V, Robitaille R, Tétreault N, et al. Circula-ting miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges[J]. Clin Biochem, 2013, 46(10/11): 846-860. |
22 | Jin SH, Zhou JG, Guan XY, et al. Development of an miRNA-array-based diagnostic signature for pe-riodontitis[J]. Front Genet, 2020, 11: 577585. |
23 | Brill N, Krasse B. The passage of tissue fluid into the clinically healthy gingival pocket[J]. Acta Odontol Scand, 1958, 16(3): 233-245. |
24 | Chambers DA, Crawford JM, Mukherjee S, et al. Aspartate aminotransferase increases in crevicular fluid during experimental periodontitis in beagle dogs[J]. J Periodontol, 1984, 55(9): 526-530. |
25 | Socransky SS, Haffajee AD, Goodson JM, et al. New concepts of destructive periodontal disease[J]. J Clin Periodontol, 1984, 11(1): 21-32. |
26 | 陈崇崇, 钟良军. 龈沟液生物标志物在慢性牙周炎诊疗中的研究进展[J]. 口腔医学, 2019, 39(11): 1047-1052. |
Chen CC, Zhong LJ. Research progress of gingival crevicular fluid biomarkers for diagnosis and treatment of chronic periodontitis[J]. Stomatology, 2019, 39(11): 1047-1052. | |
27 | Becerik S, Öztürk VÖ, Atmaca H, et al. Gingival crevicular fluid and plasma acute-phase cytokine levels in different periodontal diseases[J]. J Perio-dontol, 2012, 83(10): 1304-1313. |
28 | Ghallab NA. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: review of the current evidence[J]. Arch Oral Biol, 2018, 87: 115-124. |
29 | Elazazy O, Amr K, Abd El Fattah A, et al. Evaluation of serum and gingival crevicular fluid micro-RNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2[J]. Arch Oral Biol, 2021, 121: 104949. |
30 | Khurshid Z, Warsi I, Moin SF, et al. Biochemical analysis of oral fluids for disease detection[J]. Adv Clin Chem, 2021, 100: 205-253. |
31 | Na HS, Park MH, Song YR, et al. Elevated micro-RNA-128 in periodontitis mitigates tumor necrosis factor-α response via p38 signaling pathway in ma-crophages[J]. J Periodontol, 2016, 87(9): e173-e182. |
32 | Xie YF, Shu R, Jiang SY, et al. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues[J]. Int J Oral Sci, 2011, 3(3): 125-134. |
33 | Ghotloo S, Motedayyen H, Amani D, et al. Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity[J]. J Periodontal Res, 2019, 54(1): 27-32. |
34 | Saito A, Horie M, Ejiri K, et al. microRNA profiling in gingival crevicular fluid of periodontitis-a pilot study[J]. FEBS Open Bio, 2017, 7(7): 981-994. |
35 | Micó-Martínez P, García-Giménez JL, Seco-Cervera M, et al. MiR-1226 detection in GCF as potential biomarker of chronic periodontitis: a pilot study[J]. Med Oral Patol Oral Cir Bucal, 2018, 23(3): e308-e314. |
36 | Zhang Y, Li S, Yuan S, et al. microRNA-23a inhi-bits osteogenesis of periodontal mesenchymal stem cells by targeting bone morphogenetic protein signaling[J]. Arch Oral Biol, 2019, 102: 93-100. |
37 | Lamster IB, Ahlo JK. Analysis of gingival crevicular fluid as applied to the diagnosis of oral and systemic diseases[J]. Ann N Y Acad Sci, 2007, 1098: 216-229. |
38 | Lin W, Xiong L, Yang Z, et al. Severe periodontitis is associated with early-onset poststroke depression status[J]. J Stroke Cerebrovasc Dis, 2019, 28(12): 104413. |
39 | Gomes-Filho IS, Balinha IDSCE, da Cruz SS, et al. Moderate and severe periodontitis are positively associated with metabolic syndrome[J]. Clin Oral Investig, 2021, 25(6): 3719-3727. |
40 | Cho DH, Song IS, Choi J, et al. Risk of peripheral arterial disease in patients with periodontitis: a nationwide, population-based, matched cohort study[J]. Atherosclerosis, 2020, 297: 96-101. |
41 | Al-Rawi NH, Al-Marzooq F, Al-Nuaimi AS, et al. Salivary microRNA 155, 146a/b and 203: a pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus[J]. PLoS One, 2020, 15(8): e0237004. |
42 | Su N, Teeuw WJ, Loos BG, et al. Development and validation of a screening model for diabetes mellitus in patients with periodontitis in dental settings[J]. Clin Oral Investig, 2020, 24(11): 4089-4100. |
43 | Asa’ad F, Garaicoa-Pazmiño C, Dahlin C, et al. Expression of microRNAs in periodontal and peri-implant diseases: a systematic review and meta-analysis[J]. Int J Mol Sci, 2020, 21(11): 4147. |
44 | Cekici A, Kantarci A, Hasturk H, et al. Inflammatory and immune pathways in the pathogenesis of pe-riodontal disease[J]. Periodontol 2000, 2014, 64(1): 57-80. |
45 | Ramadan DE, Hariyani N, Indrawati R, et al. Cytokines and chemokines in periodontitis[J]. Eur J Dent, 2020, 14(3): 483-495. |
46 | Zhang T, Wu J, Ungvijanpunya N, et al. Smad6 methylation represses NFκB activation and perio-dontal inflammation[J]. J Dent Res, 2018, 97(7): 810-819. |
47 | Du A, Zhao S, Wan L, et al. microRNA expression profile of human periodontal ligament cells under the influence of Porphyromonas gingivalis LPS[J]. J Cell Mol Med, 2016, 20(7): 1329-1338. |
48 | Jiang SY, Xue D, Xie YF, et al. The negative feedback regulation of microRNA-146a in human perio-dontal ligament cells after Porphyromonas gingivalis lipopolysaccharide stimulation[J]. Inflamm Res, 2015, 64(6): 441-451. |
49 | Moffatt CE, Lamont RJ. Porphyromonas gingivalis induction of microRNA-203 expression controls su-ppressor of cytokine signaling 3 in gingival epithelial cells[J]. Infect Immun, 2011, 79(7): 2632-2637. |
50 | Kajiya M, Giro G, Taubman MA, et al. Role of pe-riodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease[J]. J Oral Microbiol, 2010, 2(1): 5532. |
51 | Noh MK, Jung M, Kim SH, et al. Assessment of IL 6, IL 8 and TNF α levels in the gingival tissue of patients with periodontitis[J]. Exp Ther Med, 2013, 6(3): 847-851. |
52 | Song B, Zhang YL, Chen LJ, et al. The role of Toll-like receptors in periodontitis[J]. Oral Dis, 2017, 23(2): 168-180. |
53 | Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384. |
54 | 胡竹林, 赵诣, 李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315. |
Hu ZL, Zhao Y, Li Y. Analysis status and clinical application prospect of biomarkers in oral gingival crevicular fluid[J]. Int J Stomatol, 2019, 46(3): 308-315. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[3] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[4] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[5] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[6] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[7] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[8] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[9] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[10] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[11] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[12] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[13] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[14] | 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271. |
[15] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
|