国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (5): 521-528.doi: 10.7518/gjkq.2022080
Huang Weikun(),Xu Qiuyan,Zhou Ting.()
摘要:
目的 研究黄芩苷在牙龈卟啉单胞菌(P. gingivalis)的致病因子脂多糖(LPS)促巨噬细胞氧化应激反应中的作用及分子机制。 方法 LPS刺激巨噬细胞的同时,采用不同浓度(5、10 μmol·L-1)的黄芩苷进行干预,分别采用细胞活性检测试剂盒(CCK8)、乳酸脱氢酶(LDH)试剂盒、2,7-二氢二氯荧光黄(DCFA-DA)探针、丙二醛(MDA)、超氧化物歧化酶(SOD)试剂盒、流式细胞仪,检测P. gingivalis-LPS对细胞所造成的损伤、细胞内活性氧(ROS)含量、MDA和SOD活性、细胞凋亡;随后,采用蛋白质印迹法(WB)检测核因子E2相关因子2(Nrf2)的总蛋白、胞质蛋白及胞核蛋白的表达情况。 结果 与对照组相比,P. gingivalis-LPS可以导致细胞活力下降(P<0.000 1)、LDH含量上升(P<0.000 1)、ROS和MDA含量上调(P<0.000 1)、SOD活性下降(P<0.000 1)以及细胞凋亡率上升(P<0.000 1)。黄芩苷的干预能够减轻P. gingivalis-LPS对细胞所造成的上述损伤(P<0.000 1);10 μmol·L-1黄芩苷的干预能够显著上调胞核Nrf2的表达(P<0.01)。 结论 黄芩苷通过促进巨噬细胞Nrf2的核转位,减轻了P. gingivalis-LPS所诱发的氧化应激损伤。
中图分类号:
1 | Slots J. Primer on etiology and treatment of progressive/severe periodontitis: a systemic health perspective[J]. Periodontol 2000, 2020, 83(1): 272-276. |
2 | Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1): 30-44. |
3 | Graziani F, Karapetsa D, Alonso B, et al. Nonsurgical and surgical treatment of periodontitis: how many options for one disease[J]. Periodontol 2000, 2017, 75(1): 152-188. |
4 | H R R, Dhamecha D, Jagwani S, et al. Local drug delivery systems in the management of periodontitis: a scientific review[J]. J Control Release, 2019, 307: 393-409. |
5 | Eid Abdelmagyd HA, Ram Shetty DS, Musa Mus-leh Al-Ahmari DM. Herbal medicine as adjunct in periodontal therapies-a review of clinical trials in past decade[J]. J Oral Biol Craniofac Res, 2019, 9(3): 212-217. |
6 | 徐倩容, 杨里娜, 艾黄萍, 等. 玄菊解毒合剂含漱液辅助治疗慢性牙周炎的临床观察[J]. 实用口腔医学杂志, 2020, 36(2): 326-329. |
Xu QR, Yang LN, Ai HP, et al. Clinical observation of Xuanjujiedu mouthwash in the treatment of pe-riodontitis[J]. J Pract Stomatol, 2020, 36(2): 326-329. | |
7 | 王杨洋, 赵婵媛, 张海龙, 等. 益气升阳固齿汤联合奥硝唑治疗慢性牙周炎疗效以及对骨保护素水平的影响[J]. 中华中医药学刊, 2018, 36(8): 2012-2015. |
Wang YY, Zhao CY, Zhang HL, et al. Effect of Yiqi Shengyang Guchi decoction combined with ornidazole in treatment of chronic periodontitis and the effect on levels of bone protection[J]. Chin Arch Tradit Chin Med, 2018, 36(8): 2012-2015. | |
8 | 刘宇, 高玲. 黄芩苷对慢性心肌衰竭大鼠心肌细胞凋亡及相关信号通路表达的影响[J]. 医学研究生学报, 2020, 33(6): 577-581. |
Liu Y, Gao L. Effect of Baicalin on myocardial cell apoptosis and Akt/AMPK/mTOR signal pathway expression in chronic myocardial failure rats[J]. J Med Postgrad, 2020, 33(6): 577-581. | |
9 | 肖意川, 张许, 柯培雄, 等. 黄芩苷在心血管疾病中的药理作用研究新进展[J]. 广东医学, 2018, 39(24): 3587-3590. |
Xiao YC, Zhang X, Ke PX, et al. Research progress on pharmacologic actions of baicalin in cardiovascular disease[J]. Guangdong Med J, 2018, 39(24): 3587-3590. | |
10 | 解立科, 田小亭, 郭小珍, 等. 黄芩素与黄芩苷微生物和肝脏代谢异同研究[J]. 中成药, 2020, 42(7): 1830-1836. |
Xie LK, Tian XT, Guo XZ, et al. Differences and similarities in microbial and liver metabolisms between baicalein and baicalin[J]. Chin Tradit Pat Med, 2020, 42(7): 1830-1836. | |
11 | 白庆云, 陶思敏, 田锦鸿, 等. 黄芩对肝病的防治作用及机制研究进展[J]. 中国中药杂志, 2020, 45(12): 2808-2816. |
Bai QY, Tao SM, Tian JH, et al. Progress of research on effect and mechanism of Scutellariae Radix on preventing liver diseases[J]. China J Chin Mater Med, 2020, 45(12): 2808-2816. | |
12 | 周毅, 陈珍, 刘杨若萱, 等. EGCG和黄芩苷协同mTOR依赖性抑制小鼠牙周炎巨噬细胞M1向极化[J]. 口腔医学研究, 2021, 37(7): 622-627. |
Zhou Y, Chen Z, Liu YRX, et al. EGCG and bai-calin inhibit M1 polarization of macrophages in mice periodontitis through mTOR Synergistically[J]. J Oral Sci Res, 2021, 37(7): 622-627. | |
13 | Chen MM, Cai WJ, Zhao SF, et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: a syste-matic review and meta-analysis[J]. J Clin Periodontol, 2019, 46(6): 608-622. |
14 | Tóthová L, Celec P. Oxidative stress and antioxidants in the diagnosis and therapy of periodontitis[J]. Front Physiol, 2017, 8: 1055. |
15 | 沈妍欣, 郭淑娟, 吴亚菲. 慢性牙周炎的氧化应激及抗氧化治疗研究进展[J]. 中华口腔医学杂志, 2016, 51(7): 442-446. |
Shen YX, Guo SJ, Wu YF. Oxidative stress and an-tioxitant therapy of chronic periodontitis[J]. Chin J Stomatol, 2016, 51(7): 442-446. | |
16 | 温静瑜, 和红兵, 任晓斌, 等. 抗氧化剂在牙周炎治疗中的应用研究[J]. 口腔医学研究, 2018, 34(1): 97-99. |
Wen JY, He HB, Ren XB, et al. Progress of application and research on antioxidants and periodontitis[J]. J Oral Sci Res, 2018, 34(1): 97-99. | |
17 | Zhou T, Huang WK, Xu QY, et al. Nec-1 attenuates inflammation and cytotoxicity induced by high glucose on THP-1 derived macrophages through RIP1 [J]. Arch Oral Biol, 2020, 118: 104858. |
18 | Liu SS, Du J, Li DF, et al. Oxidative stress induced pyroptosis leads to osteogenic dysfunction of MG63 cells[J]. J Mol Histol, 2020, 51(3): 221-232. |
19 | Zhao B, Zhang WJ, Xiong YX, et al. Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism[J]. J Mol Histol, 2020, 51(2): 161-171. |
20 | Liu H, Dong YH, Gao YT, et al. Hesperetin suppresses RANKL-induced osteoclastogenesis and ame-liorates lipopolysaccharide-induced bone loss[J]. J Cell Physiol, 2019, 234(7): 11009-11022. |
21 | 季小添, 李海珊, 李伟荣, 等. 基于黄芩苷药理研究进展探讨其对出血性脑损伤可能的保护作用及机制[J]. 中药新药与临床药理, 2020, 31(12): 1508-1515. |
Ji XT, Li HS, Li WR, et al. Exploring possible protective effect and mechanism of hemorrhagic brain injury based on the pharmacological research pro-gress of baicalin[J]. Tradit Chin Drug Res Clin Pharmacol, 2020, 31(12): 1508-1515. | |
22 | 吴艳荣, 刘光伟, 刘全忠, 等. 黄芩苷通过上调miR-190表达缓解缺氧缺糖对神经细胞损伤的研究[J]. 中草药, 2021, 52(10): 3009-3017. |
Wu YR, Liu GW, Liu QZ, et al. Baicalin alleviates damage of nerve cells caused by hypoxia and hypoglycemia by up-regulating expression of miR-190[J]. Chin Tradit Herb Drugs, 2021, 52(10): 3009-3017. | |
23 | Ma LY, Wu F, Shao QQ, et al. Baicalin alleviates o-xidative stress and inflammation in diabetic nephro-pathy via Nrf2 and MAPK signaling pathway[J]. Drug Des Devel Ther, 2021, 15: 3207-3221. |
24 | 陈铁楼, 吴织芬. 细胞凋亡及其在牙周炎发病中的分子机制[J]. 同济大学学报(医学版), 2011, 32(4): 116-119. |
Chen TL, Wu ZF. Molecular mechanism of apoptosis in pathogenesis of periodontitis[J]. J Tongji Univ (Med Sci), 2011, 32(4): 116-119. | |
25 | 季莉莉, 盛雨辰, 王峥涛. 黄芩苷对单核THP-1细胞趋化功能的影响[J]. 中国新药与临床杂志, 2007, 26(6): 422-425. |
Ji LL, Sheng YC, Wang ZT. Effects of baicalin on chemotaxis of monocytes THP-1 cell[J]. Chin J New Drugs Clin Remed, 2007, 26(6): 422-425. | |
26 | Huang Y, Hu JD, Zheng J, et al. Down-regulation of the PI3K/Akt signaling pathway and induction of apoptosis in CA46 Burkitt lymphoma cells by bai-calin[J]. J Exp Clin Cancer Res, 2012, 31(1): 48. |
27 | Kim DH, Kim JM, Lee EK, et al. Modulation of FoxO1 phosphorylation/acetylation by baicalin du-ring aging[J]. J Nutr Biochem, 2012, 23(10): 1277-1284. |
28 | Wang PZ, Zhu PP, Liu RJ, et al. Baicalin promotes extracellular matrix synthesis in chondrocytes via the activation of hypoxia-inducible factor-1α[J]. Exp Ther Med, 2020, 20(6): 226. |
29 | Zhu CH, Zhao Y, Wu XY, et al. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway[J]. J Periodontal Res, 2020, 55(3): 381-391. |
30 | Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Phy-siol Rev, 2018, 98(3): 1169-1203. |
31 | Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases[J]. Nat Rev Drug Discov, 2019, 18(4): 295-317. |
32 | Chiu AV, Saigh MA, McCulloch CA, et al. The role of NrF2 in the regulation of periodontal health and disease[J]. J Dent Res, 2017, 96(9): 975-983. |
33 | Nezu M, Suzuki N. Roles of Nrf2 in protecting the kidney from oxidative damage[J]. Int J Mol Sci, 2020, 21(8): E2951. |
34 | Ungvari Z, Tarantini S, Nyúl-Tóth Á, et al. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: from increased cellular senescence to the pathogenesis of age-related vascular diseases[J]. Geroscience, 2019, 41(6): 727-738. |
35 | Xiong YX, Zhao B, Zhang WJ, et al. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signa-ling pathway[J]. Iran J Basic Med Sci, 2020, 23(7): 954-960. |
36 | Chen WW, Yuan CC, Lu YY, et al. Tanshinone IIA protects against acute pancreatitis in mice by inhibi-ting oxidative stress via the Nrf2/ROS pathway[J]. Oxid Med Cell Longev, 2020, 2020: 5390482. |
37 | Li J, Li YP, Pan S, et al. Paeonol attenuates ligation-induced periodontitis in rats by inhibiting osteoclastogenesis via regulating Nrf2/NF-κB/NFATc1 signa-ling pathway[J]. Biochimie, 2019, 156: 129-137. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[3] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[4] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[5] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[6] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
[7] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[8] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[9] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[10] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[11] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[12] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[13] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[14] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
[15] | 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93. |
|