国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (3): 257-262.doi: 10.7518/gjkq.2020045
Yang Yeqing1,2,Chen Ming1,2,Wu Buling1,2()
摘要:
间充质干细胞是一类具有自我更新和多向分化潜能的成体干细胞。随着对间充质干细胞研究的不断深入,对间充质干细胞的生物学特性、分化能力及临床应用有了进一步认识。环状RNA(circRNA)是在真核细胞中广泛存在且多样的内源性非编码RNA,形成共价、闭合、连续稳定的环状结构,能够发挥微小RNA分子海绵作用,调控基因转录和选择性剪接。多项研究已经证实circRNA在间充质干细胞成骨向分化过程中发挥了重要作用,是细胞分化的重要调控靶点,参与维持细胞分化特性,并且从不同的角度和不同水平研究了circRNA的调控机制。本文对目前circRNA在不同间充质干细胞成骨向分化过程中的相关研究进行综述。
中图分类号:
[1] |
Qu S, Yang X, Li X , et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015,365(2):141-148.
doi: 10.1016/j.canlet.2015.06.003 pmid: 26052092 |
[2] |
Jeck WR, Sorrentino JA, Wang K , et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157.
doi: 10.1261/rna.035667.112 pmid: 23249747 |
[3] |
Salzman J, Chen RE, Olsen MN , et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013,9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 pmid: 24039610 |
[4] |
Li J, Yang J, Zhou P , et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015,5(2):472-480.
pmid: 25973291 |
[5] |
Wang F, Nazarali AJ, Ji S . Circular RNAs as poten-tial biomarkers for cancer diagnosis and therapy[J]. Am J Cancer Res, 2016,6(6):1167-1176.
pmid: 27429839 |
[6] |
Burd CE, Jeck WR, Liu Y , et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genet, 2010,6(12):e1001233.
doi: 10.1371/journal.pgen.1001233 pmid: 21151960 |
[7] | Ghosal S, Das S, Sen R , et al. Circ2Traits: a compre-hensive database for circular RNA potentially asso-ciated with disease and traits[J]. Front Genet, 2013,4:283. |
[8] |
Lukiw WJ . Circular RNA (circRNA) in Alzheimer’s disease (AD)[J]. Front Genet, 2013,4:307.
doi: 10.3389/fgene.2013.00307 pmid: 24427167 |
[9] |
Ashwal-Fluss R, Meyer M, Pamudurti NR , et al. circRNA biogenesis competes with pre-mRNA spli-cing[J]. Mol Cell, 2014,56(1):55-66.
doi: 10.1016/j.molcel.2014.08.019 pmid: 25242144 |
[10] |
Xu H, Guo S, Li W , et al. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcrip-tion and secretion in islet cells[J]. Sci Rep, 2015,5:12453.
doi: 10.1038/srep12453 pmid: 26211738 |
[11] |
Li F, Zhang L, Li W , et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J]. Oncotarget, 2015,6(8):6001-6013.
doi: 10.18632/oncotarget.3469 pmid: 25749389 |
[12] |
Heo JS, Choi Y, Kim HS , et al. Comparison of mo-lecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue[J]. Int J Mol Med, 2016,37(1):115-125.
doi: 10.3892/ijmm.2015.2413 pmid: 26719857 |
[13] |
Pires AO, Mendes-Pinheiro B, Teixeira FG , et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis[J]. Stem Cells Dev, 2016,25(14):1073-1083.
doi: 10.1089/scd.2016.0048 pmid: 27226274 |
[14] | 周洁, 王颖, 张雷 , 等. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018,45(3):280-285. |
Zhou J, Wang Y, Zhang L , et al. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering[J]. Int J Stomatol, 2018,45(3):280-285. | |
[15] | 叶青松, 王晓燕 . 牙源性干细胞储存和临床应用的研究进展[J]. 口腔疾病防治, 2018,26(1):15-25. |
Ye QS, Wang XY . Progress in storage and clinical application of dental stem cells[J]. J Dent Prev Treat, 2018,26(1):15-25. | |
[16] |
Laino G, d’Aquino R, Graziano A , et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB)[J]. J Bone Miner Res, 2005(8):1394-1402.
doi: 10.1359/JBMR.050325 pmid: 16007337 |
[17] |
Amir LR, Suniarti DF, Utami S , et al. Chitosan as a potential osteogenic factor compared with dexame-thasone in cultured macaque dental pulp stromal cells[J]. Cell Tissue Res, 2014,358(2):407-415.
doi: 10.1007/s00441-014-1938-1 pmid: 24992928 |
[18] |
Seo BM, Sonoyama W, Yamaza T , et al. SHED repair critical-size calvarial defects in mice[J]. Oral Dis, 2008,14(5):428-434.
doi: 10.1111/j.1601-0825.2007.01396.x pmid: 18938268 |
[19] |
Bahn JH, Zhang Q, Li F , et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015,61(1):221-230.
doi: 10.1373/clinchem.2014.230433 pmid: 25376581 |
[20] | 张雄, 陈良娇, 兰泽栋 . 基因芯片筛选人牙周膜干细胞成骨向分化生物学标记物的研究[J]. 广东医学, 2016,37(14):2080-2083. |
Zhang X, Chen LJ, Lan ZD . Screening of biomarkers for osteogenic differentiation of human periodontal ligament stem cells by gene chip[J]. Guangdong Med J, 2016,37(14):2080-2083. | |
[21] |
Zheng Y, Li X, Huang Y , et al. The circular RNA landscape of periodontal ligament stem cells during osteogenesis[J]. J Periodontol, 2017,88(9):906-914.
doi: 10.1902/jop.2017.170078 pmid: 28598284 |
[22] |
Gu X, Li M, Jin Y , et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100.
doi: 10.1186/s12863-017-0569-4 pmid: 29197342 |
[23] |
Wang H, Feng C, Jin Y , et al. Identification and cha-racterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019,234(7):10166-10177.
doi: 10.1002/jcp.27686 pmid: 30422310 |
[24] |
Li Y, Zheng Q, Bao C , et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015,25(8):981-984.
doi: 10.1038/cr.2015.82 pmid: 26138677 |
[25] |
Cui Y, Luan J, Li H , et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression[J]. FEBS Lett, 2016,590(1):185-192.
doi: 10.1002/1873-3468.12024 pmid: 26763102 |
[26] |
Yan YX, Gong YW, Guo Y , et al. Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation[J]. PLoS One, 2012,7(4):e35709.
doi: 10.1371/journal.pone.0035709 pmid: 22539993 |
[27] |
Raicevic G, Najar M, Pieters K , et al. Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin[J]. Tissue Eng Part A, 2012,18(13/14):1410-1418.
doi: 10.1089/ten.TEA.2011.0434 pmid: 22429150 |
[28] |
Li C, Li B, Dong Z , et al. Lipopolysaccharide dif-ferentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway[J]. Stem Cell Res Ther, 2014,5(3):67.
doi: 10.1186/scrt456 pmid: 24887697 |
[29] | Huang J, Zhao L, Xing L , et al. MicroRNA-204 re-gulates Runx2 protein expression and mesenchymal progenitor cell differentiation[J]. Stem Cells, 2010,28(2):357-364. |
[30] |
Wang H, Meng Y, Cui Q , et al. MiR-101 targets the EZH2/Wnt/β-catenin the pathway to promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Sci Rep, 2016,6:36988.
doi: 10.1038/srep36988 pmid: 27845386 |
[31] |
Zhang ZC, Liu JX, Shao ZW , et al. In vitro effect of microRNA-107 targeting Dkk-1 by regulation of Wnt/β-catenin signaling pathway in osteosarcoma[J]. Medicine (Baltimore), 2017,96(27):e7245.
doi: 10.1097/MD.0000000000007245 pmid: 28682874 |
[32] |
Li X, Zheng Y, Zheng Y , et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018,9(1):232.
doi: 10.1186/s13287-018-0976-0 pmid: 30170617 |
[33] | 占云燕, 张皓, 杨国斌 , 等. 小鼠牙乳头细胞向成牙本质细胞向分化过程中环状RNA的表达谱研究[J]. 口腔医学研究, 2018,34(4):371-374. |
Zhan YY, Zhang H, Yang GB , et al. Analysis of circle RNA expression profile variation during odon-toblastic differentiation of mouse dental papilla cells[J]. J Oral Sci Res, 2018,34(4):371-374. | |
[34] |
Li Z, Li N, Ge X , et al. Differential circular RNA expression profiling during osteogenic differentiation of stem cells from apical papilla[J]. Epigenomics, 2019,11(9):1057-1073.
doi: 10.2217/epi-2018-0184 pmid: 31140301 |
[35] |
Li X, Peng B, Zhu X , et al. Changes in related circular RNAs following ERβ knockdown and the relation-ship to rBMSC osteogenesis[J]. Biochem Biophys Res Commun, 2017,493(1):100-107.
doi: 10.1016/j.bbrc.2017.09.068 pmid: 28919414 |
[36] |
Zhang M, Jia L , Zheng Y. circRNA expression pro-files in human bone marrow stem cells undergoing osteoblast differentiation[J]. Stem Cell Rev Rep, 2019,15(1):126-138.
doi: 10.1007/s12015-018-9841-x pmid: 30046991 |
[37] | 赵可伟 . 绝经后骨质疏松环状RNA表达谱研究及潜在分子标志物筛选[D]. 广州: 南方医科大学, 2018. |
Zhao KW . Microarry analysis of circular RNA expression profile and the screening of potential biomarkers for postmenopausal osteoporosis[D]. Guangzhou: Southern Medical University, 2018. | |
[38] |
Yin Q, Wang J, Fu Q , et al. CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteopo-rosis[J]. J Cell Mol Med, 2018, (12):6112-6121.
doi: 10.1111/jcmm.13888 pmid: 30324718 |
[39] |
Yang L, Zeng Z, Kang N , et al. Circ-VANGL1 pro-motes the progression of osteoporosis by absorbing miRNA-217 to regulate RUNX2 expression[J]. Eur Rev Med Pharmacol Sci, 2019,23(3):949-957.
doi: 10.26355/eurrev_201902_16981 pmid: 30779060 |
[40] |
Ren W, Yang L, Deng T , et al. Calcitonin gene-related peptide regulates FOSL2 expression and cell proliferation of BMSCs via mmu_circRNA_003795[J]. Mol Med Rep, 2019,19(5):3732-3742.
doi: 10.3892/mmr.2019.10038 pmid: 30896827 |
[41] |
Qian DY, Yan GB, Bai B , et al. Differential circRNA expression profiles during the BMP2-induced osteo-genic differentiation of MC3T3-E1 cells[J]. Biomed Pharmacother, 2017,90:492-499.
doi: 10.1016/j.biopha.2017.03.051 pmid: 28395271 |
[42] |
Long T, Guo Z, Han L , et al. Differential expression profiles of circular RNAs during osteogenic differen-tiation of mouse adipose-derived stromal cells[J]. Calcif Tissue Int, 2018,103(3):338-352.
doi: 10.1007/s00223-018-0426-0 pmid: 29700558 |
[43] |
Li S, Lin C, Zhang J , et al. Quaking promotes the odontoblastic differentiation of human dental pulp stem cells[J]. J Cell Physiol, 2018,233(9):7292-7304.
doi: 10.1002/jcp.26561 pmid: 29663385 |
[1] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[2] | 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42. |
[3] | 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419. |
[4] | 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271. |
[5] | 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695. |
[6] | 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204. |
[7] | 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63. |
[8] | 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
[9] | 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269. |
[10] | 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277. |
[11] | 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145. |
[12] | 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151. |
[13] | 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645. |
[14] | 葛逸弘, 房付春, 吴补领. 长链非编码RNA在间充质干细胞多向分化过程中的调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 267-271. |
[15] | 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58. |
|