国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (3): 263-269.doi: 10.7518/gjkq.2020033
Liu Junqi,Chen Yiyin,Yang Wenbin()
摘要:
RNA腺嘌呤6-甲基化修饰是真核生物信使RNA和非编码RNA上最为常见的一种表观遗传修饰,对于真核生物多项生命活动的调控起着至关重要的作用。近来的研究发现,RNA腺嘌呤6-甲基化修饰在骨髓间充质干细胞的分化,尤其是成骨向分化上,扮演着十分重要的角色。本文通过对RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的相关研究加以总结,以期为后续基础研究以及临床应用提供新的思路。
中图分类号:
[1] |
Bianco P, Robey PG, Simmons PJ . Mesenchymal stem cells: revisiting history, concepts, and assays[J]. Cell Stem Cell, 2008,2(4):313-319.
doi: 10.1016/j.stem.2008.03.002 pmid: 18397751 |
[2] |
Jing H, Liao L, An YL , et al. Suppression of EZH2 prevents the shift of osteoporotic MSC fate to adi-pocyte and enhances bone formation during osteo-porosis[J]. Mol Ther, 2016,24(2):217-229.
doi: 10.1038/mt.2015.152 pmid: 26307668 |
[3] |
Aghebati-Maleki L, Dolati S, Zandi R , et al. Prospect of mesenchymal stem cells in therapy of osteopo-rosis: a review[J]. J Cell Physiol, 2019,234(6):8570-8578.
doi: 10.1002/jcp.27833 pmid: 30488448 |
[4] |
Teven CM, Liu X, Hu N , et al. Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation[J]. Stem Cells Int, 2011,2011:201371.
doi: 10.4061/2011/201371 pmid: 21772852 |
[5] | Cao YY, Yang HQ, Jin LY , et al. Genome-wide DNA methylation analysis during osteogenic differentia-tion of human bone marrow mesenchymal stem cells[J]. Stem Cell Int, 2018,2018:1-11. |
[6] |
Wu YS, Zhou CC, Yuan Q . Role of DNA and RNA N6-adenine methylation in regulating stem cell fate[J]. Curr Stem Cell Res Ther, 2018,13(1):31-38.
doi: 10.2174/1574888X12666170621125457 pmid: 28637404 |
[7] |
Desrosiers R, Friderici K, Rottman F . Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974,71(10):3971-3975.
doi: 10.1073/pnas.71.10.3971 pmid: 4372599 |
[8] |
Fu Y, Dominissini D, Rechavi G , et al. Gene expre-ssion regulation mediated through reversible m6A RNA methylation[J]. Nat Rev Genet, 2014,15(5):293-306.
doi: 10.1038/nrg3724 pmid: 24662220 |
[9] |
Shi HL, Wei JB, He C . Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers[J]. Mol Cell, 2019,74(4):640-650.
doi: 10.1016/j.molcel.2019.04.025 pmid: 31100245 |
[10] |
Wang P, Doxtader KA, Nam Y . Structural basis for cooperative function of Mettl3 and Mettl14 methyl-transferases[J]. Mol Cell, 2016,63(2):306-317.
doi: 10.1016/j.molcel.2016.05.041 pmid: 27373337 |
[11] |
Zhou KI, Pan T . Structures of the m6A methyl-transferase complex: two subunits with distinct but coordinated roles[J]. Mol Cell, 2016,63(2):183-185.
doi: 10.1016/j.molcel.2016.07.005 pmid: 27447983 |
[12] |
Wang X, Feng J, Xue Y , et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2016,534(7608):575-578.
doi: 10.1038/nature18298 pmid: 27281194 |
[13] |
Wang X, Huang JB, Zou TT , et al. Human m6A writers: two subunits, 2 roles[J]. RNA Biol, 2017,14(3):300-304.
doi: 10.1080/15476286.2017.1282025 pmid: 28121234 |
[14] |
Liu JZ, Yue YN, Han DL , et al. A METTL3-METTL- 14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014,10(2):93-95.
doi: 10.1038/nchembio.1432 pmid: 24316715 |
[15] |
Ping XL, Sun BF, Wang L , et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladeno-sine methyltransferase[J]. Cell Res, 2014,24(2):177-189.
doi: 10.1038/cr.2014.3 pmid: 24407421 |
[16] |
Gerken T, Girard CA, Tung YC , et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-de-pendent nucleic acid demethylase[J]. Science, 2007,318(5855):1469-1472.
doi: 10.1126/science.1151710 pmid: 17991826 |
[17] |
Gao X, Shin YH, Li M , et al. The fat mass and obe-sity associated gene FTO functions in the brain to regulate postnatal growth in mice[J]. PLoS One, 2010,5(11):e14005.
doi: 10.1371/journal.pone.0014005 pmid: 21103374 |
[18] |
Zhao X, Yang Y, Sun BF , et al. FTO-dependent de-methylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014,24(12):1403-1419.
doi: 10.1038/cr.2014.151 |
[19] |
Zhang MZ, Zhang Y, Ma J , et al. The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation[J]. PLoS One, 2015,10(7):e0133788.
doi: 10.1371/journal.pone.0133788 pmid: 26218273 |
[20] |
Zheng GQ, Dahl JA, Niu YM , et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013,49(1):18-29.
doi: 10.1016/j.molcel.2012.10.015 pmid: 23177736 |
[21] |
Du H, Zhao Y, He JQ , et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex[J]. Nat Com-mun, 2016,7:12626.
doi: 10.1038/ncomms12626 pmid: 27558897 |
[22] |
Berlivet S, Scutenaire J, Deragon JM , et al. Readers of the m6A epitranscriptomic code[J]. Biochim Biophys Acta Gene Regul Mech, 2019,1862(3):329-342.
doi: 10.1016/j.bbagrm.2018.12.008 pmid: 30660758 |
[23] |
Wang X, Lu ZK, Gomez A , et al. N6-methylade-nosine-dependent regulation of messenger RNA stability[J]. Nature, 2014,505(7481):117-120.
doi: 10.1038/nature12730 pmid: 24284625 |
[24] |
Xiao W, Adhikari S, Dahal U , et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing[J]. Mol Cell, 2016,61(4):507-519.
doi: 10.1016/j.molcel.2016.01.012 pmid: 26876937 |
[25] |
Wang X, Zhao BS, Roundtree IA , et al. N6-me-thyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015,161(6):1388-1399.
doi: 10.1016/j.cell.2015.05.014 pmid: 26046440 |
[26] |
Schumann U, Shafik A, Preiss T . METTL3 gains R/W access to the epitranscriptome[J]. Mol Cell, 2016,62(3):323-324.
doi: 10.1016/j.molcel.2016.04.024 pmid: 27153530 |
[27] |
Ke SD, Alemu EA, Mertens C , et al. A majority of m6A residues are in the last exons, allowing the po-tential for 3’ UTR regulation[J]. Genes Dev, 2015,29(19):2037-2053.
doi: 10.1101/gad.269415.115 pmid: 26404942 |
[28] |
Meyer KD, Saletore Y, Zumbo P , et al. Compre-hensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons[J]. Cell, 2012,149(7):1635-1646.
doi: 10.1016/j.cell.2012.05.003 pmid: 22608085 |
[29] |
Meyer KD, Jaffrey SR . Rethinking m6A readers, writers, and erasers[J]. Annu Rev Cell Dev Biol, 2017,33:319-342.
doi: 10.1146/annurev-cellbio-100616-060758 pmid: 28759256 |
[30] |
Wu R, Li A, Sun BF , et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelina-tion [J]. Cell Res, 2019,29(1):23-41.
doi: 10.1038/s41422-018-0113-8 pmid: 30514900 |
[31] |
Ji PF, Wang X, Xie NN , et al. N6-methyladenosine in RNA and DNA: an epitranscriptomic and epige-netic player implicated in determination of stem cell fate[J]. Stem Cells Int, 2018,2018:3256524.
doi: 10.1155/2018/3256524 pmid: 30405719 |
[32] |
Cui Q, Shi HL, Ye P , et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells[J]. Cell Rep, 2017,18(11):2622-2634.
doi: 10.1016/j.celrep.2017.02.059 pmid: 28297667 |
[33] |
Lee H, Bao SY, Qian YZ , et al. Stage-specific re-quirement for Mettl3-dependent m6A mRNA me-thylation during haematopoietic stem cell differen-tiation[J]. Nat Cell Biol, 2019,21(6):700-709.
doi: 10.1038/s41556-019-0318-1 pmid: 31061465 |
[34] |
Yang DD, Qiao J, Wang GY , et al. N6-Methyladeno-sine modification of lincRNA 1281 is critically re-quired for mESC differentiation potential[J]. Nucleic Acids Res, 2018,46(8):3906-3920.
doi: 10.1093/nar/gky130 pmid: 29529255 |
[35] |
Geula S, Moshitch-Moshkovitz S, Dominissini D , et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 2015,347(6225):1002-1006.
doi: 10.1126/science.1261417 pmid: 25569111 |
[36] |
Zhao BS, He C . Fate by RNA methylation: m6A steers stem cell pluripotency[J]. Genome Biol, 2015,16:43.
doi: 10.1186/s13059-015-0609-1 pmid: 25723450 |
[37] |
Zhang CX, Chen YS, Sun BF , et al. m6A modulates haematopoietic stem and progenitor cell specification[J]. Nature, 2017,549(7671):273-276.
doi: 10.1038/nature23883 pmid: 28869969 |
[38] |
Weng HY, Huang HL, Wu HZ , et al. METTL14 inhi-bits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A mo-dification[J]. Cell Stem Cell, 2018, 22(2): 191-205.e9.
doi: 10.1016/j.stem.2017.11.016 pmid: 29290617 |
[39] |
Yoon KJ, Ringeling FR, Vissers C , et al. Temporal control of mammalian cortical neurogenesis by m6A methylation[J]. Cell, 2017, 171(4): 877-889.e17.
doi: 10.1016/j.cell.2017.09.003 pmid: 28965759 |
[40] |
Li LP, Zang LQ, Zhang FR , et al. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis[J]. Hum Mol Genet, 2017,26(13):2398-2411.
doi: 10.1093/hmg/ddx128 pmid: 28398475 |
[41] |
Wang Y, Li Y, Yue MH , et al. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications[J]. Nat Neurosci, 2018,21(2):195-206.
doi: 10.1038/s41593-017-0057-1 pmid: 29335608 |
[42] |
Chen JC, Zhang YC, Huang CM , et al. m6A regulates neurogenesis and neuronal development by modula-ting histone methyltransferase Ezh2[J]. Genomics Proteomics Bioinformatics, 2019,17(2):154-168.
doi: 10.1016/j.gpb.2018.12.007 pmid: 31154015 |
[43] |
Wu YS, Xie L, Wang MY , et al. Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis[J]. Nat Commun, 2018,9(1):4772.
doi: 10.1038/s41467-018-06898-4 pmid: 30429466 |
[44] |
Tian C, Huang YL, Li QM , et al. Mettl3 regulates osteogenic differentiation and alternative splicing of vegfa in bone marrow mesenchymal stem cells[J]. Int J Mol Sci, 2019,20(3):E551.
doi: 10.3390/ijms20030551 pmid: 30696066 |
[45] |
Jüppner H, Abou-Samra AB, Freeman M , et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide[J]. Science, 1991,254(5034):1024-1026.
doi: 10.1126/science.1658941 pmid: 1658941 |
[46] |
Abou-Samra AB, Jüppner H, Force T , et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor sti-mulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium[J]. Proc Natl Acad Sci U S A, 1992,89(7):2732-2736.
doi: 10.1073/pnas.89.7.2732 pmid: 1313566 |
[47] |
Balani DH, Ono N, Kronenberg HM . Parathyroid hormone regulates fates of murine osteoblast pre-cursors in vivo[J]. J Clin Invest, 2017,127(9):3327-3338.
doi: 10.1172/JCI91699 pmid: 28758904 |
[48] |
Rickard DJ, Wang FL, Rodriguez-Rojas AM , et al. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte dif-ferentiation in human bone marrow stromal cells[J]. Bone, 2006,39(6):1361-1372.
doi: 10.1016/j.bone.2006.06.010 pmid: 16904389 |
[49] |
Shen WC, Lai YC, Li LH , et al. Methylation and PTEN activation in dental pulp mesenchymal stem cells promotes osteogenesis and reduces oncogenesis[J]. Nat Commun, 2019,10(1):2226.
doi: 10.1038/s41467-019-10197-x pmid: 31110221 |
[50] | Luo GM, Xu B, Huang YL . Icariside Ⅱ promotes the osteogenic differentiation of canine bone marrow mesenchymal stem cells via the PI3K/AKT/mTOR/S6K1 signaling pathways[J]. Am J Transl Res, 2017,9(5):2077-2087. |
[51] |
Hui SY, Yang Y, Li J , et al. Differential miRNAs profile and bioinformatics analyses in bone marrow mesenchymal stem cells from adolescent idiopathic scoliosis patients[J]. Spine J, 2019,19(9):1584-1596.
doi: 10.1016/j.spinee.2019.05.003 pmid: 31100472 |
[52] |
Yao XD, Jing XZ, Guo JC , et al. Icariin protects bone marrow mesenchymal stem cells against iron overload induced dysfunction through mitochondrial fusion and fission, PI3K/AKT/mTOR and MAPK pathways[J]. Front Pharmacol, 2019,10:163.
doi: 10.3389/fphar.2019.00163 pmid: 30873034 |
[53] |
Lin H, Shabbir A, Molnar M , et al. Adenoviral ex-pression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells[J]. J Cell Physiol, 2008,216(2):458-468.
doi: 10.1002/jcp.21414 pmid: 18288639 |
[54] |
Li R, Nauth A, Li C , et al. Expression of VEGF gene isoforms in a rat segmental bone defect model treated with EPCs[J]. J Orthop Trauma, 2012,26(12):689-692.
doi: 10.1097/BOT.0b013e318266eb7e pmid: 22932749 |
[55] |
Carmeliet P, Ng YS, Nuyens D , et al. Impaired myo-cardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188[J]. Nat Med, 1999,5(5):495-502.
doi: 10.1038/8379 pmid: 10229225 |
[56] |
Shen GS, Zhou HB, Zhang H , et al. The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis[J]. Biochim Biophys Acta Mol Basis Dis, 2018,1864(12):3644-3654.
doi: 10.1016/j.bbadis.2018.09.015 pmid: 30279140 |
[57] |
Liu WQ, Zhou LY, Zhou CC , et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation[J]. Nat Commun, 2016,7:12794.
doi: 10.1038/ncomms12794 pmid: 27653144 |
[58] |
Takada I, Kouzmenko AP, Kato S . Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis[J]. Nat Rev Rheumatol, 2009,5(8):442-447.
doi: 10.1038/nrrheum.2009.137 pmid: 19581903 |
[1] | 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42. |
[2] | 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419. |
[3] | 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695. |
[4] | 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204. |
[5] | 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63. |
[6] | 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
[7] | 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262. |
[8] | 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277. |
[9] | 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145. |
[10] | 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151. |
[11] | 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645. |
[12] | 葛逸弘, 房付春, 吴补领. 长链非编码RNA在间充质干细胞多向分化过程中的调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 267-271. |
[13] | 武云舒, 袁泉. RNA腺嘌呤6-甲基化修饰调控干细胞分化的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 272-275. |
[14] | 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58. |
[15] | 薛令法, 张岱尊, 肖文林, 于保军. 机械牵张力促进小鼠骨髓间充质干细胞的成骨向分化[J]. 国际口腔医学杂志, 2017, 44(6): 679-685. |
|