国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (3): 272-275.doi: 10.7518/gjkq.2018.03.005
武云舒, 袁泉
Wu Yunshu, Yuan Quan
摘要: 腺嘌呤甲基化形成6-甲基腺嘌呤(m6A)是真核生物中最为常见的一种RNA转录后修饰,参与众多基因的表达及细胞活动中复杂而精细的生物学调控。腺嘌呤的6-甲基化是一种动态可逆性过程,甲基转移酶Mettl3、Mettl14和Wtap催化m6A的生成,而去甲基化酶FTO和ALKBH5可以催化m6A去除甲基。近年来的研究发现,甲基转移酶和去甲基化酶可以通过在RNA上“书写”或“擦除”m6A标记来调控干细胞的多能性和分化,为RNA表观遗传学调控干细胞命运提供了新的研究角度。
中图分类号:
[1] Meyer KD, Saletore Y, Zumbo P, et al.Comprehen-sive analysis of mRNA methylation reveals enrichment in 3’UTRs and near stop codons[J]. Cell, 2012, 149(7):1635-1646. [2] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397):201-206. [3] Zheng G, Dahl JA, Niu Y, et al.ALKBH5 is a mam-malian RNA demethylase that impacts RNA metabo-lism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29. [4] Schwartz S, Mumbach MR, Jovanovic M, et al.Per-turbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites[J]. Cell Rep, 2014, 8(1):284-296. [5] Wang X, Lu Z, Gomez A, et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481):117-120. [6] Liu N, Dai Q, Zheng G, et al.N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540):560-564. [7] Roost C, Lynch SR, Batista PJ, et al.Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification[J]. J Am Chem Soc, 2015, 137(5):2107-2115. [8] Liu J, Yue Y, Han D, et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2):93-95. [9] Wang Y, Li Y, Toth JI, et al.N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nat Cell Biol, 2014, 16(2):191-198. [10] Agarwala SD, Blitzblau HG, Hochwagen A, et al.RNA methylation by the MIS complex regulates a cell fate decision in yeast[J]. PLoS Genet, 2012, 8(6):e1002732. [11] Bodi Z, Zhong S, Mehra S, et al.Adenosine methy-lation in arabidopsis mRNA is associated with the 3’ end and reduced levels cause developmental defects[J]. Front Plant Sci, 2012, 3:48. [12] Batista P, Molinie B, Wang J, et al.m6A RNA modi-fication controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6):707-719. [13] Aguilo F, Zhang F, Sancho A, et al.Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming[J]. Cell Stem Cell, 2015, 17(6):689-704. [14] Chen T, Hao YJ, Zhang Y, et al.m6A RNA methyla-tion is regulated by microRNAs and promotes repro-gramming to pluripotency[J]. Cell Stem Cell, 2015, 16(3):289-301. [15] Geula S, Moshitch-Moshkovitz S, Dominissini D, et al.Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentia-tion[J]. Science, 2015, 347(6225):1002-1006. [16] Ping XL, Sun BF, Wang L, et al.Mammalian WTAP is a regulatory subunit of the RNA N6-methyladeno-sine methyltransferase[J]. Cell Res, 2014, 24(2):177-189. [17] Fukusumi Y, Naruse C, Asano M.Wtap is required for differentiation of endoderm and mesoderm in the mouse embryo[J]. Dev Dyn, 2008, 237(3):618-629. [18] Dina C, Meyre D, Gallina S, et al.Variation in FTO contributes to childhood obesity and severe adult obesity[J]. Nat Genet, 2007, 39(6):724-726. [19] Keller L, Xu W, Wang HX, et al.The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer’s disease risk: a prospective cohort study[J]. J Alzheimers Dis, 2011, 23(3):461-469. [20] Hess ME, Brüning JC.The fat mass and obesity-associated (FTO) gene: obesity and beyond[J]. Biochim Biophys Acta, 2014, 1842(10):2039-2047. [21] Loos RJ, Yeo GS.The bigger picture of FTO: the first GWAS-identified obesity gene[J]. Nat Rev En-docrinol, 2014, 10(1):51-61. [22] Jia G, Fu Y, Zhao X, et al.N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12):885-887. [23] McMurray F, Church CD, Larder R, et al. Adult onset global loss of the fto gene alters body com-position and metabolism in the mouse[J]. PLoS Genet, 2013, 9(1):e1003166. [24] Zhao X, Yang Y, Sun BF, et al.FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014, 24(12):1403-1419. [25] Zhang M, Zhang Y, Ma J, et al.The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation[J]. PLoS One, 2015, 10(7):e0133788. [26] Thalhammer A, Bencokova Z, Poole R, et al.Human AlkB homologue 5 is a nuclear 2-oxoglutarate de-pendent oxygenase and a direct target of hypoxia-inducible factor 1α (HIF-1α)[J]. PLoS One, 2011, 6(1):e16210. |
[1] | 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269. |
[2] | 邱静怡,万凌云,赵志河,李娟. 内外源性应力对间质干细胞成软骨分化的调控[J]. 国际口腔医学杂志, 2016, 43(4): 449-455. |
[3] | 彭正军 刘路 凌均棨. 细胞重编程及其影响因素[J]. 国际口腔医学杂志, 2014, 41(3): 300-303. |
[4] | 张弘1综述 张志光2审校. 血管周细胞的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 529-532. |
|