国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (2): 198-204.doi: 10.7518/gjkq.2021032
Deng Shiyong(),Gong Ping,Tan Zhen()
摘要:
近日钟基因调控哺乳动物的昼夜节律,脑和肌肉芳香烃受体核转运样蛋白1(Bmal1)基因作为其核心组分之一,与多种生物行为活动密切相关,近年来,其在调控骨代谢方面具有的重要作用也受到越来越多的关注。Bmal1基因可通过下游多种信号通路的介导,分别参与调节骨相关成骨细胞、破骨细胞及软骨细胞等细胞的生理活动,进而影响如骨质疏松、骨关节炎等骨代谢相关疾病,同时也在颌骨的生理病理过程中发挥作用。本文就Bmal1基因调控骨代谢的研究进展作一综述,为口腔及全身相关骨代谢疾病的诊疗提供可能思路。
中图分类号:
[1] |
Berendsen AD, Olsen BR. Bone development[J]. Bone, 2015,80:14-18.
pmid: 26453494 |
[2] |
Rodan GA, Martin TJ. Therapeutic approaches to bone diseases[J]. Science, 2000,289(5484):1508-1514.
doi: 10.1126/science.289.5484.1508 pmid: 10968781 |
[3] |
Chen GJ, Tang QM, Yu SL, et al. The biological function of BMAL1 in skeleton development and disorders[J]. Life Sci, 2020,253:117636.
doi: 10.1016/j.lfs.2020.117636 pmid: 32251631 |
[4] |
Ma ZM, Jin XX, Qian Z, et al. Deletion of clock gene Bmal1 impaired the chondrocyte function due to disruption of the HIF1α-VEGF signaling pathway[J]. Cell Cycle, 2019,18(13):1473-1489.
doi: 10.1080/15384101.2019.1620572 pmid: 31107137 |
[5] |
Takarada T, Xu C, Ochi H, et al. Bone resorption is regulated by circadian clock in osteoblasts[J]. J Bone Miner Res, 2017,32(4):872-881.
doi: 10.1002/jbmr.3053 pmid: 27925286 |
[6] |
Tang ZH, Xu TY, Li YH, et al. Inhibition of CRY2 by STAT3/miRNA-7-5p promotes osteoblast diffe-rentiation through upregulation of CLOCK/BMAL1/P300 expression[J]. Mol Ther Nucleic Acids, 2020,19:865-876.
doi: 10.1016/j.omtn.2019.12.020 pmid: 31982773 |
[7] |
Truong KK, Lam MT, Grandner MA, et al. Timing matters: circadian rhythm in sepsis, obstructive lung disease, obstructive sleep apnea, and cancer[J]. Ann Am Thorac Soc, 2016,13(7):1144-1154.
doi: 10.1513/AnnalsATS.201602-125FR pmid: 27104378 |
[8] |
Wu XY, Yu G, Parks H, et al. Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure[J]. Bone, 2008,42(5):861-870.
doi: 10.1016/j.bone.2007.12.226 |
[9] |
McElderry JD, Zhao GS, Khmaladze A, et al. Trac-king circadian rhythms of bone mineral deposition in murine calvarial organ cultures[J]. J Bone Miner Res, 2013,28(8):1846-1854.
doi: 10.1002/jbmr.1924 pmid: 23505073 |
[10] |
Barinaga M. Circadian rhythms. Two feedback loops run mammalian clock[J]. Science, 2000,288(5468):943-944.
doi: 10.1126/science.288.5468.943a pmid: 10841707 |
[11] |
Janjić K, Kurzmann C, Moritz A, et al. Expression of circadian core clock genes in fibroblasts of human gingiva and periodontal ligament is modulated by L-mimosine and hypoxia in monolayer and sphe-roid cultures[J]. Arch Oral Biol, 2017,79:95-99.
doi: 10.1016/j.archoralbio.2017.03.007 pmid: 28350992 |
[12] |
Janjić K, Kurzmann C, Moritz A, et al. Core circa-dian clock gene expression in human dental pulp-derived cells in response to L-mimosine, hypoxia and echinomycin[J]. Eur J Oral Sci, 2018,126(4):263-271.
pmid: 30006964 |
[13] |
Rahman S, Kraljević Pavelić S, Markova-Car E. Circadian (de)regulation in head and neck squamous cell carcinoma[J]. Int J Mol Sci, 2019,20(11):E2662.
doi: 10.3390/ijms20112662 pmid: 31151182 |
[14] |
Kondratov RV, Kondratova AA, Gorbacheva VY, et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock[J]. Genes Dev, 2006,20(14):1868-1873.
doi: 10.1101/gad.1432206 pmid: 16847346 |
[15] |
Yuan GS, Hua BX, Yang Y, et al. The circadian GeneClockRegulates bone formation via PDIA3[J]. J Bone Miner Res, 2017,32(4):861-871.
doi: 10.1002/jbmr.3046 pmid: 27883226 |
[16] |
Zvonic S, Ptitsyn AA, Kilroy G, et al. Circadian oscillation of gene expression in murine calvarial bone[J]. J Bone Miner Res, 2007,22(3):357-365.
pmid: 17144790 |
[17] |
Tonna EA, Singh IJ, Sandhu HS. Autoradiographic investigation of circadian rhythms in alveolar bone periosteum and cementum in young mice[J]. Histol Histopathol, 1987,2(2):129-133.
pmid: 2980712 |
[18] |
Hilbert DA, Memmert S, Marciniak J, et al. Molecular biology of periodontal ligament fibroblasts and orthodontic tooth movement: evidence and possible role of the circadian rhythm[J]. J Orofac Orthop, 2019,80(6):336-347.
doi: 10.1007/s00056-019-00195-5 pmid: 31650205 |
[19] |
Zhao JJ, Zhou X, Tang QM, et al. BMAL1 deficiency contributes to mandibular dysplasia by upregula-ting MMP3[J]. Stem Cell Reports, 2018,10(1):180-195.
doi: 10.1016/j.stemcr.2017.11.017 pmid: 29276151 |
[20] |
Chen YJ, Xu XM, Tan Z, et al. Age-related BMAL1 change affects mouse bone marrow stromal cell proliferation and osteo-differentiation potential[J]. Arch Med Sci, 2012,8(1):30-38.
doi: 10.5114/aoms.2012.27277 pmid: 22457671 |
[21] |
Guo BY, Chatterjee S, Li LF, et al. The clock gene, brain and muscle arnt-like 1, regulates adipogenesis via Wnt signaling pathway[J]. FASEB J, 2012,26(8):3453-3463.
doi: 10.1096/fj.12-205781 pmid: 22611086 |
[22] |
He Y, Chen Y, Zhao Q, et al. Roles of brain and muscle arnt-like 1 and Wnt antagonist Dkk1 during osteogenesis of bone marrow stromal cells[J]. Cell Prolif, 2013,46(6):644-653.
doi: 10.1111/cpr.12075 pmid: 24460718 |
[23] |
Huang ZF, Wei H, Wang X, et al. Icariin promotes osteogenic differentiation of BMSCs by upregula-ting BMAL1 expression via BMP signaling[J]. Mol Med Rep, 2020,21(3):1590-1596.
doi: 10.3892/mmr.2020.10954 pmid: 32016461 |
[24] | He Y, Lin FW, Chen YQ, et al. Overexpression of the circadian clock gene Rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis[J]. Stem Cells Dev, 2015,24(10):1194-1204. |
[25] | Samsa WE, Vasanji A, Midura RJ, et al. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype[J]. Bone, 2016,84:194-203. |
[26] |
Li XG, Liu N, Gu B, et al. BMAL1 regulates ba-lance of osteogenic-osteoclastic function of bone marrow mesenchymal stem cells in type 2 diabetes mellitus through the NF-κB pathway[J]. Mol Biol Rep, 2018,45(6):1691-1704.
doi: 10.1007/s11033-018-4312-7 pmid: 30259246 |
[27] |
Terheyden H, Lang NP, Bierbaum S, et al. Osseointegration-communication of cells[J]. Clin Oral Implants Res, 2012,23(10):1127-1135.
doi: 10.1111/j.1600-0501.2011.02327.x pmid: 22092345 |
[28] |
Mengatto CM, Mussano F, Honda Y, et al. Circa-dian rhythm and cartilage extracellular matrix genes in osseointegration: a genome-wide screening of implant failure by vitamin D deficiency[J]. PLoS One, 2011,6(1):e15848.
doi: 10.1371/journal.pone.0015848 pmid: 21264318 |
[29] |
Hassan N, McCarville K, Morinaga K, et al. Tita-nium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells[J]. PLoS One, 2017,12(8):e0183359.
pmid: 28817668 |
[30] |
Lin FW, Chen YJ, Li XL, et al. Over-expression of circadian clock gene Bmal1 affects proliferation and the canonical Wnt pathway in NIH-3T3 cells[J]. Cell Biochem Funct, 2013,31(2):166-172.
pmid: 22961668 |
[31] |
Lee S, Donehower LA, Herron AJ, et al. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice[J]. PLoS One, 2010,5(6):e10995.
pmid: 20539819 |
[32] |
Fei CM, Zhao YS, Guo J, et al. Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes[J]. Eur J Haematol, 2014,93(6):476-486.
pmid: 24889123 |
[33] |
Mao XF, Li XG, Hu W, et al. Downregulated brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 inhibits osteogenesis of BMSCs through p53 in type 2 diabetes mellitus[J]. Biol Open, 2020, 9(7): bio051482.
doi: 10.1242/bio.051482 pmid: 32554484 |
[34] | Wu YL, Tang DB, Liu N, et al. Reciprocal regulation between the circadian clock and hypoxia signa-ling at the genome level in mammals[J]. Cell Metab, 2017,25(1):73-85. |
[35] |
Stevenson S, Hunziker EB, Herrmann W, et al. Is longitudinal bone growth influenced by diurnal va-riation in the mitotic activity of chondrocytes of the growth plate[J]. J Orthop Res, 1990,8(1):132-135.
doi: 10.1002/jor.1100080117 pmid: 2293628 |
[36] |
Gossan N, Zeef L, Hensman J, et al. The circadian clock in murine chondrocytes regulates genes controlling key aspects of cartilage homeostasis[J]. Arthritis Rheum, 2013,65(9):2334-2345.
doi: 10.1002/art.38035 pmid: 23896777 |
[37] |
Hand LE, Dickson SH, Freemont AJ, et al. The circadian regulator Bmal1 in joint mesenchymal cells regulates both joint development and inflammatory arthritis[J]. Arthritis Res Ther, 2019,21(1):5.
pmid: 30612576 |
[38] |
Dudek M, Gossan N, Yang N, et al. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity[J]. J Clin Invest, 2016,126(1):365-376.
doi: 10.1172/JCI82755 pmid: 26657859 |
[39] |
Schipani E, Maes C, Carmeliet G, et al. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF[J]. J Bone Miner Res, 2009,24(8):1347-1353.
doi: 10.1359/jbmr.090602 pmid: 19558314 |
[40] |
Akagi R, Akatsu Y, Fisch KM, et al. Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF-β signaling in chondrocytes[J]. Osteoarthritis Cartilage, 2017,25(6):943-951.
doi: 10.1016/j.joca.2016.11.007 pmid: 27884645 |
[41] | Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology[J]. J Mol Med (Berl), 2001,79(5/6):243-253. |
[42] |
Negishi-Koga T, Shinohara M, Komatsu N, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D[J]. Nat Med, 2011,17(11):1473-1480.
doi: 10.1038/nm.2489 pmid: 22019888 |
[43] |
Qian Z, Zhang Y, Kang XM, et al. Postnatal conditional deletion of Bmal1 in osteoblasts enhances trabecular bone formation via increased BMP2 signals[J]. J Bone Miner Res, 2020,35(8):1481-1493.
doi: 10.1002/jbmr.4017 pmid: 32212389 |
[44] |
Zhou X, Yu R, Long YL, et al. BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation[J]. Cell Prolif, 2018,51(5):e12470.
doi: 10.1111/cpr.12470 pmid: 30117209 |
[45] |
Tsang K, Liu HM, Yang Y, et al. Defective circadian control in mesenchymal cells reduces adult bone mass in mice by promoting osteoclast function[J]. Bone, 2019,121:172-180.
doi: 10.1016/j.bone.2019.01.016 pmid: 30659979 |
[46] |
Xu C, Ochi H, Fukuda T, et al. Circadian clock regulates bone resorption in mice[J]. J Bone Miner Res, 2016,31(7):1344-1355.
doi: 10.1002/jbmr.2803 pmid: 26841172 |
[47] |
Janjić K, Kurzmann C, Moritz A, et al. Expression of circadian core clock genes in fibroblasts of human gingiva and periodontal ligament is modulated by L-mimosine and hypoxia in monolayer and sphe-roid cultures[J]. Arch Oral Biol, 2017,79:95-99.
pmid: 28350992 |
[48] |
Xie MR, Tang QM, Nie JM, et al. BMAL1-downregulation aggravates Porphyromonas gingivalis-induced atherosclerosis by encouraging oxidative stress[J]. Circ Res, 2020,126(6):e15-e29.
pmid: 32078488 |
[49] |
Carcuac O, Abrahamsson I, Albouy JP, et al. Experimental periodontitis and peri-implantitis in dogs[J]. Clin Oral Implants Res, 2013,24(4):363-371.
pmid: 23176551 |
[50] | Zhang J, Li ZG, Si YM, et al. The difference on the osteogenic differentiation between periodontal ligament stem cells and bone marrow mesenchymal stem cells under inflammatory microenviroments[J]. Differentiation, 2014,88(4/5):97-105. |
[51] | Zhang L, Wang PH, Mei SL, et al. In vivo alveolar bone regeneration by bone marrow stem cells/fibrin glue composition[J]. Arch Oral Biol, 2012,57(3):238-244. |
[52] |
Early JO, Menon D, Wyse CA, et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2[J]. Proc Natl Acad Sci U S A, 2018,115(36):E8460-E8468.
pmid: 30127006 |
[53] |
Smith BJ, Sutton GM, Wu X, et al. Ovariectomy and genes encoding core circadian regulatory proteins in murine bone[J]. Osteoporos Int, 2011,22(5):1633-1639.
doi: 10.1007/s00198-010-1325-z pmid: 20593165 |
[54] |
Tahara Y, Takatsu Y, Shiraishi T, et al. Age-related circadian disorganization caused by sympathetic dysfunction in peripheral clock regulation[J]. NPJ Aging Mech Dis, 2017,3:16030.
doi: 10.1038/npjamd.2016.30 pmid: 28721279 |
[55] |
Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets[J]. Nat Rev Drug Discov, 2014,13(3):197-216.
doi: 10.1038/nrd4100 pmid: 24577401 |
[56] |
Li Y, Zhou J, Wu Y, et al. Association of osteoporosis with genetic variants of circadian genes in Chinese geriatrics[J]. Osteoporos Int, 2016,27(4):1485-1492.
doi: 10.1007/s00198-015-3391-8 pmid: 26564225 |
[57] | Snelling SJ, Forster A, Mukherjee S, et al. The chondrocyte-intrinsic circadian clock is disrupted in human osteoarthritis[J]. Chronobiol Int, 2016,33(5):574-579. |
[58] |
He D, An YX, Li YH, et al. RNA sequencing reveals target genes of temporomandibular joint osteoarthritis in rats after the treatment of low-intensity pulsed ultrasound[J]. Gene, 2018,672:126-136.
doi: 10.1016/j.gene.2018.06.002 pmid: 29885465 |
[59] |
Doody KM, Bottini N. Chondrocyte clocks make cartilage time-sensitive material[J]. J Clin Invest, 2016,126(1):38-39.
pmid: 26657854 |
[60] |
Saito T, Kawaguchi H. HIF-2α as a possible therapeutic target of osteoarthritis[J]. Osteoarthritis Cartilage, 2010,18(12):1552-1556.
doi: 10.1016/j.joca.2010.10.006 pmid: 20950696 |
[1] | 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42. |
[2] | 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695. |
[3] | 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63. |
[4] | 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
[5] | 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262. |
[6] | 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269. |
[7] | 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277. |
[8] | 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151. |
[9] | 王小萌,王晓,史册,孙宏晨,黄洋. 骨形态发生蛋白信号通路及其交叉对话对下颌骨发育的影响[J]. 国际口腔医学杂志, 2019, 46(3): 258-262. |
[10] | 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645. |
[11] | 葛逸弘, 房付春, 吴补领. 长链非编码RNA在间充质干细胞多向分化过程中的调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 267-271. |
[12] | 钱浩亮, 李盛, 江宏兵. 颅骨锁骨发育不全综合征及其牙颌面表征[J]. 国际口腔医学杂志, 2018, 45(1): 64-67. |
[13] | 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58. |
[14] | 薛令法, 张岱尊, 肖文林, 于保军. 机械牵张力促进小鼠骨髓间充质干细胞的成骨向分化[J]. 国际口腔医学杂志, 2017, 44(6): 679-685. |
[15] | 张建康, 卫俊俊, 唐曌隆, 余云波, 敬伟. Wnt和Notch通路在老龄个体骨髓间充质干细胞成骨中的调控[J]. 国际口腔医学杂志, 2017, 44(4): 459-465. |
|