国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (5): 603-612.doi: 10.7518/gjkq.2023077

• 综述 • 上一篇    下一篇

机械疗法在正畸治疗中应用的研究进展

宋文鹏1,2(),龚蓓文3,李聃2,曾剑玉2,仇玲玲3()   

  1. 1.首都医科大学附属北京天坛医院口腔科 北京 100070
    2.首都医科大学附属北京口腔医院种植中心 北京 100050
    3.首都医科大学附属北京口腔医院正畸科 北京 100050
  • 收稿日期:2022-12-12 修回日期:2023-04-05 出版日期:2023-09-01 发布日期:2023-09-01
  • 通讯作者: 仇玲玲
  • 作者简介:宋文鹏,住院医师,硕士,Email:15011482782@163.com
  • 基金资助:
    首都医科大学附属北京口腔医院创新团队建设项目(CXTD-202203)

Research progress on the application of mechanotherapy in orthodontic treatment

Song Wenpeng1,2(),Gong Beiwen3,Li Dan2,Zeng Jianyu2,Qiu Lingling3()   

  1. 1.Dept. of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
    2.Dept. of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
    3.Dept. of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
  • Received:2022-12-12 Revised:2023-04-05 Online:2023-09-01 Published:2023-09-01
  • Contact: Lingling Qiu
  • Supported by:
    Innovation Team Construction Project of Beijing Stomatological Hospital, Capital Medical University(CXTD202203)

摘要:

机械疗法因其安全性而被广泛应用于医学研究和临床实践。机械疗法通常包括体外冲击波治疗、低强度脉冲超声和振动治疗等,可以通过多种途径作用于蛋白、细胞和组织,产生独特的治疗效果。近年来,随着研究的进步,利用机械疗法辅助正畸治疗得到了越来越多的关注。本文综述了近年来机械疗法作为正畸辅助治疗的研究进展及相关机制,为未来的临床研究提供指导。

关键词: 正畸, 机械疗法, 体外冲击波治疗, 低强度脉冲超声, 振动疗法

Abstract:

Mechanotherapy has been widely applied in basic research and clinical practices due to its safety. Mechanotherapy, including extracorporeal shock wave therapy, low-intensity pulsed ultrasound, vibration therapy, etc., is able to act on proteins, cells, and tissues in multiple pathways to produce unique therapeutic effects. In recent years, with the development of research, the use of mechanotherapy to assist orthodontic treatment has received more and more attention. This article will review the research progress and related mechanisms of mechanotherapy as an adjuvant orthodontic treatment in recent years, and provide guidance for future clinical research.

Key words: orthodontics, mechanotherapy, extracorporeal shock wave therapy, low-intensity pulsed ultrasound, vibration therapy

中图分类号: 

  • R 783.5

图1

LIPUS对正畸治疗的辅助作用"

图 2

3种机械疗法在口腔正畸中的使用方式"

1 Tsichlaki A, Chin SY, Pandis N, et al. How long does treatment with fixed orthodontic appliances last? A systematic review[J]. Am J Orthod Dentofacial Orthop, 2016, 149(3): 308-318.
2 El-Bialy T, Farouk K, Carlyle TD, et al. Effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption: a prospective multi-center randomized controlled trial[J]. J Clin Med, 2020, 9(3): 804.
3 Wishney M. Potential risks of orthodontic therapy: a critical review and conceptual framework[J]. Aust Dent J, 2017, 62(): 86-96.
4 Sulewska M, Duraj E, Bugała-Musiatowicz B, et al. Assessment of the effect of the corticotomy-assisted orthodontic treatment on the maxillary periodontal tissue in patients with malocclusions with transverse maxillary deficiency: a case series[J]. BMC Oral Health, 2018, 18(1): 162.
5 Kim YS, Kim SJ, Yoon HJ, et al. Effect of piezopuncture on tooth movement and bone remodeling in dogs[J]. Am J Orthod Dentofacial Orthop, 2013, 144(1): 23-31.
6 Brudvik P, Rygh P. Root resorption after local injection of prostaglandin E2 during experimental tooth movement[J]. Eur J Orthod, 1991, 13(4): 255-263.
7 Mayama A, Seiryu M, Takano-Yamamoto T. Effect of vibration on orthodontic tooth movement in a double blind prospective randomized controlled trial[J]. Sci Rep, 2022, 12(1): 1288.
8 Bakdach WMM, Hadad R. Effectiveness of low-le-vel laser therapy in accelerating the orthodontic tooth movement: a systematic review and meta-analysis[J]. Dent Med Probl, 2020, 57(1): 73-94.
9 Marquezan M, Bolognese AM, de Souza Araújo MT. Evaluation of two protocols for low-level laser application in patients submitted to orthodontic treatment[J]. Dental Press J Orthod, 2013, 18(1): 33.e1-33.e339.
10 Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes[J]. Nat Rev Cardiol, 2020, 17(1): 52-63.
11 d’Agostino MC, Craig K, Tibalt E, et al. Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction[J]. Int J Surg, 2015, 24(Pt B): 147-153.
12 Jiang XX, Savchenko O, Li YF, et al. A review of low-intensity pulsed ultrasound for therapeutic applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-2718.
13 Claes L, Willie B. The enhancement of bone rege-neration by ultrasound[J]. Prog Biophys Mol Biol, 2007, 93(1/2/3): 384-398.
14 Shobara K, Ogawa T, Shibamoto A, et al. Osteoge-nic effect of low-intensity pulsed ultrasound and whole-body vibration on peri-implant bone. An experimental in vivo study[J]. Clin Oral Implants Res, 2021, 32(5): 641-650.
15 Jiang YX, Yuan Y, Xiong Y, et al. Low-intensity pulsed ultrasound improves osseointegration of dental implant in mice by inducing local neuronal production of αCGRP[J]. Arch Oral Biol, 2020, 115: 104736.
16 Schätzle M, Männchen R, Zwahlen M, et al. Survi-val and failure rates of orthodontic temporary ancho-rage devices: a systematic review[J]. Clin Oral Implants Res, 2009, 20(12): 1351-1359.
17 Ure DS, Oliver DR, Kim KB, et al. Stability chan-ges of miniscrew implants over time[J]. Angle Orthod, 2011, 81(6): 994-1000.
18 Ganzorig K, Kuroda S, Maeda Y, et al. Low-intensity pulsed ultrasound enhances bone formation ar-ound miniscrew implants[J]. Arch Oral Biol, 2015, 60(6): 902-910.
19 Miura K, Motoyoshi M, Inaba M, et al. A preliminary study of the effects of low-intensity pulsed ultrasound exposure on the stability of orthodontic miniscrews in growing rats[J]. Eur J Orthod, 2014, 36(4): 419-424.
20 Alazzawi MMJ, Husein A, Alam MK, et al. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats[J]. Prog Orthod, 2018, 19(1): 10.
21 Xue H, Zheng J, Cui ZP, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway[J]. PLoS One, 2013, 8(7): e68926.
22 Al-Dboush R, Esfahani AN, El-Bialy T. Impact of photobiomodulation and low-intensity pulsed ultrasound adjunctive interventions on orthodontic treatment duration during clear aligner therapy[J]. Angle Orthod, 2021, 91(5): 619-625.
23 Kaur H, El-Bialy T. Shortening of overall orthodontic treatment duration with low-intensity pulsed ultrasound (LIPUS)[J]. J Clin Med, 2020, 9(5): 1303.
24 Inubushi T, Tanaka E, Rego EB, et al. Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application[J]. Bone, 2013, 53(2): 497-506.
25 Qamruddin I, Alam MK, Mahroof V, et al. Biostimulatory effects of low-intensity pulsed ultrasound on rate of orthodontic tooth movement and associated pain, applied at 3-week intervals: a split-mouth study[J]. Pain Res Manag, 2021, 2021: 6624723.
26 Fang XW, Qi R, Liu CF. Root resorption in ortho-dontic treatment with clear aligners: a systematic review and meta-analysis[J]. Orthod Craniofac Res, 2019, 22(4): 259-269.
27 Feres MFN, Kucharski C, Diar-Bakirly S, et al. Effect of low-intensity pulsed ultrasound on the activity of osteoclasts: an in vitro study[J]. Arch Oral Biol, 2016, 70: 73-78.
28 Liu ZF, Xu J, Lingling E, et al. Ultrasound enhances the healing of orthodontically induced root resorption in rats[J]. Angle Orthod, 2012, 82(1): 48-55.
29 Amuk NG, Kurt G, Guray E. Effects of photobiomodulation and ultrasound applications on orthodon-tically induced inflammatory root resorption; transcriptional alterations in OPG, RANKL, Cox-2: an experimental study in rats[J]. Photomed Laser Surg, 2018, 36(12): 653-659.
30 Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low-and high-intensity ultrasound[J]. Arch Oral Biol, 2008, 53(4): 318-323.
31 Al-Daghreer S, Doschak M, Sloan AJ, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs[J]. Ultrasound Med Biol, 2014, 40(6): 1187-1196.
32 Alshihah N, Alhadlaq A, El-Bialy T, et al. The effect of low intensity pulsed ultrasound on dentoalveolar structures during orthodontic force application in diabetic ex-vivo model[J]. Arch Oral Biol, 2020, 119: 104883.
33 El-Bialy T, Lam B, Aldaghreer S, et al. The effect of low intensity pulsed ultrasound in a 3D ex vivo or-thodontic model[J]. J Dent, 2011, 39(10): 693-699.
34 Dahhas FY, El-Bialy T, Afify AR, et al. Effects of low-intensity pulsed ultrasound on orthodontic tooth movement and orthodontically induced inflammatory root resorption in ovariectomized osteoporotic rats[J]. Ultrasound Med Biol, 2016, 42(3): 808-814.
35 El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans[J]. Am J Orthod Dentofacial Orthop, 2004, 126(2): 186-193.
36 Raza H, Major P, Dederich D, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption caused by torque: a prospective, double-blind, controlled clinical trial[J]. Angle Orthod, 2016, 86(4): 550-557.
37 Wang H, Wan Y, Tam KF, et al. Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest[J]. Osteoporos Int, 2012, 23(8): 2169-2178.
38 Nishimura M, Chiba M, Ohashi T, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats[J]. Am J Orthod Dentofacial Orthop, 2008, 133(4): 572-583.
39 Alikhani M, Alansari S, Hamidaddin MA, et al. Vibration paradox in orthodontics: anabolic and catabolic effects[J]. PLoS One, 2018, 13(5): e0196540.
40 Sasaki K, Takeshita N, Fukunaga T, et al. Vibration accelerates orthodontic tooth movement by inducing osteoclastogenesis via transforming growth factor‑β signalling in osteocytes[J]. Eur J Orthod, 2022, 44(6): 698-704.
41 Telatar BC, Gungor AY. Effectiveness of vibrational forces on orthodontic treatment: a randomized, controlled clinical trial[J]. J Orofac Orthop, 2021, 82(5): 288-294.
42 Orton-Gibbs S, Kim NY. Clinical experience with the use of pulsatile forces to accelerate treatment[J]. J Clin Orthod, 2015, 49(9): 557-573.
43 Orton-Gibbs S. Accelerated orthodontics using pulsatile forces in orthognathic surgical patients[J]. J Clin Orthod, 2016, 50(10): 592-604.
44 Bowman SJ. The effect of vibration on molar dista-lization[J]. J Clin Orthod, 2016, 50(11): 683-693.
45 Bowman SJ. The effect of vibration on the rate of leveling and alignment[J]. J Clin Orthod, 2014, 48(11): 678-688.
46 Pavlin D, Anthony R, Raj V, et al. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial[J]. Semin Orthod, 2015, 21(3): 187-194.
47 Liao ZP, Elekdag-Turk S, Turk T, et al. Computational and clinical investigation on the role of mechanical vibration on orthodontic tooth movement[J]. J Biomech, 2017, 60: 57-64.
48 Leethanakul C, Suamphan S, Jitpukdeebodintra S, et al. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement[J]. Angle Orthod, 2016, 86(1): 74-80.
49 Benjakul S, Unat B, Thammanichanon P, et al. Vibration synergistically enhances IL-1β and TNF‑α in compressed human periodontal ligament cells in the frequency-dependent manner[J]. J Oral Biol Craniofac Res, 2020, 10(4): 412-416.
50 Iwasaki LR, Haack JE, Nickel JC, et al. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement[J]. Arch Oral Biol, 2001, 46(2): 185-189.
51 Teixeira CC, Khoo E, Tran J, et al. Cytokine expression and accelerated tooth movement[J]. J Dent Res, 2010, 89(10): 1135-1141.
52 Ren YJ, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement[J]. Eur J Oral Sci, 2008, 116(2): 89-97.
53 Figueredo CMS, Ribeiro MSM, Fischer RG, et al. Increased interleukin-1β concentration in gingival crevicular fluid as a characteristic of periodontitis[J]. J Periodontol, 1999, 70(12): 1457-1463.
54 Phusuntornsakul P, Jitpukdeebodintra S, Pavasant P, et al. Vibration enhances PGE2, IL-6, and IL-8 expression in compressed hPDL cells via cyclooxygenase pathway[J]. J Periodontol, 2018, 89(9): 1131-1141.
55 Benjakul S, Leethanakul C, Jitpukdeebodintra S. Low magnitude high frequency vibration induces RANKL via cyclooxygenase pathway in human periodontal ligament cells in vitro [J]. J Oral Biol Craniofac Res, 2019, 9(3): 251-255.
56 Waelkens P, Alsabbagh E, Sauter A, et al. Pain ma-nagement after complex spine surgery: a systematic review and procedure-specific postoperative pain management recommendations[J]. Eur J Anaesthe-siol, 2021, 38(9): 985-994.
57 Alamir AH, Patil S. Allicin could potentially alle-viate oral cancer pain by inhibiting “pain mediators” TNF-alpha, IL-8, and endothelin[J]. Curr Issues Mol Biol, 2021, 43(1): 187-196.
58 Öztürk T, Amuk NG. Three-dimensional imaging and molecular analysis of the effects of photobiomodulation and mechanical vibration on orthodontic retention treatment in rats: effects of photobiomodulation and mechanical vibration on orthodontic retention treatment[J]. J Orofac Orthop, 2022, 83(): 24-41.
59 Thammanichanon P, Kaewpitak A, Binlateh T, et al. Interval vibration reduces orthodontic pain via a mechanism involving down-regulation of TRPV1 and CGRP[J]. In Vivo, 2020, 34(5): 2389-2399.
60 Bakdach WMM, Hadad R. Effectiveness of supplemental vibrational force in reducing pain associated with orthodontic treatment: a systematic review[J]. Quintessence Int, 2020, 51(9): 742-752.
61 Taha K, Conley RS, Arany P, et al. Effects of mechanical vibrations on maxillary canine retraction and perceived pain: a pilot, single-center, rando-mized-controlled clinical trial[J]. Odontology, 2020, 108(2): 321-330.
62 Woodhouse NR, DiBiase AT, Papageorgiou SN, et al. Supplemental vibrational force does not reduce pain experience during initial alignment with fixed orthodontic appliances: a multicenter randomized clinical trial[J]. Sci Rep, 2015, 5: 17224.
63 Woodhouse NR, DiBiase AT, Johnson N, et al. Supplemental vibrational force during orthodontic alignment: a randomized trial[J]. J Dent Res, 2015, 94(5): 682-689.
64 Reiss S, Chouinard MC, Landa DF, et al. Biomar-kers of orthodontic tooth movement with fixed appliances and vibration appliance therapy: a pilot study[J]. Eur J Orthod, 2020, 42(4): 378-386.
65 DiBiase AT, Woodhouse NR, Papageorgiou SN, et al. Effect of supplemental vibrational force on orthodontically induced inflammatory root resorption: a multicenter randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2016, 150(6): 918-927.
66 DiBiase AT, Woodhouse NR, Papageorgiou SN, et al. Effects of supplemental vibrational force on space closure, treatment duration, and occlusal outcome: a multicenter randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2018, 153(4): 469.e4-480.e4.
67 Katchooi M, Cohanim B, Tai S, et al. Effect of supplemental vibration on orthodontic treatment with aligners: a randomized trial[J]. Am J Orthod Dentofacial Orthop, 2018, 153(3): 336-346.
68 Aljabaa A, Almoammar K, Aldrees A, et al. Effects of vibrational devices on orthodontic tooth movement: a systematic review[J]. Am J Orthod Dentofacial Orthop, 2018, 154(6): 768-779.
69 Lombardo L, Arreghini A, Huanca Ghislanzoni LT, et al. Does low-frequency vibration have an effect on aligner treatment? A single-centre, randomized controlled trial[J]. Eur J Orthod, 2019, 41(4): 434-443.
70 Robertson MA, Kau CH, English JD, et al. MI paste plus to prevent demineralization in orthodontic pa-tients: a prospective randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2011, 140(5): 660-668.
71 Shi L, Gao F, Sun W, et al. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients[J]. Osteoporos Int, 2017, 28(10): 2945-2953.
72 McClure SR, Van sickle D, White MR. Effects of extracorporeal shock wave therapy on bone[J]. Vet Surg, 2004, 33(1): 40-48.
73 Koch M, Schapher M, Mantsopoulos K, et al. Multimodal treatment in difficult sialolithiasis: role of extracorporeal shock-wave lithotripsy and intraductal pneumatic lithotripsy[J]. Laryngoscope, 2018, 128(10): E332-E338.
74 Hazan-Molina H, Reznick AZ, Kaufman H, et al. Assessment of IL-1β and VEGF concentration in a rat model during orthodontic tooth movement and extracorporeal shock wave therapy[J]. Arch Oral Biol, 2013, 58(2): 142-150.
75 Hazan-Molina H, Kaufman H, Reznick ZA, et al. Orthodontic tooth movement under extracorporeal shock wave therapy: the characteristics of the inflammatory reaction: a preliminary study[J]. Refuat Hapeh Vehashinayim (1993), 2011, 28(3): 55-60, 71.
76 Hazan-Molina H, Reznick AZ, Kaufman H, et al. Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model[J]. J Periodontal Res, 2015, 50(3): 389-396.
77 Hazan-Molina H, Aizenbud I, Kaufman H, et al. The influence of shockwave therapy on orthodontic tooth movement induced in the rat[J]. Adv Exp Med Biol, 2016, 878: 57-65.
78 Demir O, Arici N. Dose-related effects of extracorporeal shock waves on orthodontic tooth movement in rabbits[J]. Sci Rep, 2021, 11(1): 3405.
79 Song WP, Ma XH, Sun YX, et al. Extracorporeal shock wave therapy (ESWT) may be helpful in the osseointegration of dental implants: a hypothesis[J]. Med Hypotheses, 2020, 145: 110294.
80 Falkensammer F, Rausch-Fan X, Schaden W, et al. Impact of extracorporeal shockwave therapy on tooth mobility in adult orthodontic patients: a randomized single-center placebo-controlled clinical trial[J]. J Clin Periodontol, 2015, 42(3): 294-301.
81 Karkhanechi M, Chow D, Sipkin J, et al. Periodontal status of adult patients treated with fixed buccal appliances and removable aligners over one year of active orthodontic therapy[J]. Angle Orthod, 2013, 83(1): 146-151.
82 Müller P, Guggenheim B, Attin T, et al. Potential of shock waves to remove calculus and biofilm[J]. Clin Oral Investig, 2011, 15(6): 959-965.
83 Novak KF, Govindaswami M, Ebersole JL, et al. Effects of low-energy shock waves on oral bacteria[J]. J Dent Res, 2008, 87(10): 928-931.
84 Falkensammer F, Arnhart C, Krall C, et al. Impact of extracorporeal shock wave therapy (ESWT) on orthodontic tooth movement-a randomized clinical trial[J]. Clin Oral Investig, 2014, 18(9): 2187-2192.
85 Koolen MKE, Kruyt MC, Zadpoor AA, et al. Optimization of screw fixation in rat bone with extracorpo-real shock waves[J]. J Orthop Res, 2018, 36(1): 76-84.
86 Falkensammer F, Rausch-Fan X, Arnhart C, et al. Impact of extracorporeal shock-wave therapy on the stability of temporary anchorage devices in adults: a single-center, randomized, placebo-controlled clinical trial[J]. Am J Orthod Dentofacial Orthop, 2014, 146(4): 413-422.
[1] 王楠楠,贺红,花放. 正畸相关釉质脱矿危险因素的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 91-98.
[2] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[3] 朱叶玲,王茜,孙天瞳,王丽娜,何小明,李加志. 实现牙列前移新型推簧装置的改良应用[J]. 国际口腔医学杂志, 2023, 50(1): 82-90.
[4] 王启秋,支清惠. 釉质白垩斑治疗方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 717-723.
[5] 郭子源,常笑,韩开放,张锡忠. 低能量激光促进正畸牙移动有效性研究的系统评价与Meta分析[J]. 国际口腔医学杂志, 2022, 49(2): 163-172.
[6] 杨赟琪,林阳阳,侯敏. 手术优先模式颌骨稳定性及影响因素研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 227-232.
[7] 李俊霖,肖立伟. 隐形矫治技术推磨牙远移机制与疗效的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 109-115.
[8] 周梦琪,陈学鹏,傅柏平. 正畸治疗中牙槽骨骨开窗骨开裂的预防和应对策略[J]. 国际口腔医学杂志, 2021, 48(5): 600-608.
[9] 刘玲,龚仁国,董秀华,刘入梦. 正畸联合双颌手术治疗前牙区严重骨性开长期稳定性的Meta分析[J]. 国际口腔医学杂志, 2021, 48(2): 173-179.
[10] 郭子源,谢文婷,李文龙,张锡忠. Spee曲线在口腔正畸领域的应用及研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 90-95.
[11] 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627-634.
[12] 杨虹,晋瑜,赖文莉. 安慰剂调节正畸牙移动疼痛的随机交叉对照试验[J]. 国际口腔医学杂志, 2020, 47(4): 424-430.
[13] 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
[14] 郑丹,易俭如,李宇,赵志河. 新型正畸转矩簧夹装式门形辅弓及其临床应用[J]. 国际口腔医学杂志, 2020, 47(4): 491-496.
[15] 陈艺尹,刘俊圻,李承浩. 牙槽突裂的裂隙特点及正畸治疗对唇腭裂患者牙槽突植骨术的影响[J]. 国际口腔医学杂志, 2020, 47(3): 345-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .