国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (5): 613-617.doi: 10.7518/gjkq.2023073

• 综述 • 上一篇    下一篇

粪肠球菌逃逸宿主免疫防御机制的研究进展

徐智博(),孟秀萍()   

  1. 吉林大学口腔医院牙体牙髓病科 长春 130021
  • 收稿日期:2022-10-15 修回日期:2023-03-06 出版日期:2023-09-01 发布日期:2023-09-01
  • 通讯作者: 孟秀萍
  • 作者简介:徐智博,硕士,Email:xuzb21@mails.jlu.edu.cn

Research progress on mechanism of Enterococcus faecalis escaping host immune defense

Xu Zhibo(),Meng Xiuping.()   

  1. Dept. of Cariology and Endodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
  • Received:2022-10-15 Revised:2023-03-06 Online:2023-09-01 Published:2023-09-01
  • Contact: Xiuping. Meng

摘要:

粪肠球菌是持续性根尖周炎中最主要的致病菌,含有多种毒力因子。宿主免疫防御能调动体内多种免疫细胞以及免疫分子来调控机体的炎症反应,可在粪肠球菌引起的持续性根尖周炎中发挥重要作用。然而,粪肠球菌在入侵机体的过程中可因多种逃逸及抵抗宿主免疫防御的机制,使其在宿主体内存活,进而造成组织损伤。本文对近年来粪肠球菌逃逸宿主免疫防御机制的研究进展作一综述,旨在从免疫角度探究粪肠球菌在根尖周组织中不易被清除机制,以期为持续性根尖周炎的防治提供新的思路。

关键词: 粪肠球菌, 免疫逃逸, 根尖周炎

Abstract:

Enterococcus faecalis is the main pathogenic bacteria in persistent apical periodontitis, which contains a variety of virulence factors. The host immune defense can mobilize a variety of immune cells and immune molecules in the body to regulate the body’s inflammatory response, which can play an important role in persistent periapical periodontitis caused by Enterococcus faecalisis. However, in the process of invading the body, Enterococcus faecalisis can form a va-riety of mechanisms to escape host defense immunity, so that it can survive in the host and cause damage. This article will review the research progress on the immune defense mechanism of Enterococcus faecalisis escaping the host, aiming to explore why Enterococcus faecalisis cannot be cleared in the periapical tissue from the perspective of immunity, in order to provide new information for the prevention and treatment of persistent periapical periodontitis idea.

Key words: Enterococcus faecalis, immune evasion, periodontitis

中图分类号: 

  • Q 939.93
1 Siqueira JF Jr, Antunes HS, Pérez AR, et al. The apical root canal system of teeth with posttreatment apical periodontitis: correlating microbiologic, tomographic, and histopathologic findings[J]. J Endod, 2020, 46(9): 1195-1203.
2 Çalışkan MK, Kaval ME, Tekin U, et al. Radiographic and histological evaluation of persistent periapical lesions associated with endodontic fai-lures after apical microsurgery[J]. Int Endod J, 2016, 49(11): 1011-1019.
3 Yin M, Zhang Y, Li H. Advances in research on immunoregulation of macrophages by plant polysaccharides[J]. Front Immunol, 2019, 10: 145.
4 Urusova DV, Merriman JA, Gupta A, et al. Rifampin resistance mutations in the rpoB gene of Enterococcus faecalis impact host macrophage cytokine production[J]. Cytokine, 2022, 151: 155788.
5 Wang S, Liu K, Seneviratne CJ, et al. Lipoteichoic acid from an Enterococcus faecalis clinical strain pro-motes TNF-α expression through the NF-κB and p38 MAPK signaling pathways in differentiated THP-1 macrophages[J]. Biomed Rep, 2015, 3(5): 697-702.
6 Zou J, Shankar N. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in ma-crophages[J]. Cell Microbiol, 2016, 18(6): 831-843.
7 Lin PW, Chu ML, Liu HS. Autophagy and metabolism[J]. Kaohsiung J Med Sci, 2021, 37(1): 12-19.
8 Daw K, Baghdayan AS, Awasthi S, et al. Biofilm and planktonic Enterococcus faecalis elicit different responses from host phagocytes in vitro [J]. FEMS Immunol Med Microbiol, 2012, 65(2): 270-282.
9 Baldassarri L, Bertuccini L, Creti R, et al. Glycosaminoglycans mediate invasion and survival of Enterococcus faecalis into macrophages[J]. J Infect Dis, 2005, 191(8): 1253-1262.
10 Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J]. Cell, 1998, 93(2): 165-176.
11 Xu ZZ, Tong ZC, Neelakantan P, et al. Enterococcus faecalis immunoregulates osteoclastogenesis of macrophages[J]. Exp Cell Res, 2018, 362(1): 152-158.
12 Yang J, Park OJ, Kim J, et al. Lipoteichoic acid of Enterococcus faecalis inhibits the differentiation of macrophages into osteoclasts[J]. J Endod, 2016, 42(4): 570-574.
13 Zou J, Shankar N. Enterococcus faecalis infection activates phosphatidylinositol 3-kinase signaling to block apoptotic cell death in macrophages[J]. Infect Immun, 2014, 82(12): 5132-5142.
14 孙鹏, 陈敏, 张细六, 等. 虎杖苷通过调控HMGB1/TLR4/NF-κB信号通路对脓毒症急性肺损伤的保护作用[J]. 浙江中医药大学学报, 2021, 45(7): 691-699.
Sun P, Chen M, Zhang XL, et al. The protective effect of polydatin on sepsis-induced acute lung injury in rats by regulating HMGB1/TLR4/NF-κB signa-ling pathway[J]. J Zhejiang Chin Med Univ, 2021, 45(7): 691-699.
15 唐秋玲, 李格格, 潘佳慧, 等. 细胞焦亡与牙龈卟啉单胞菌的关系及其在牙周病发生发展中的作用机制[J]. 国际口腔医学杂志, 2017, 44(6): 660-663.
Tang QL, Li GG, Pan JH, et al. Mechanism of pyroptosis and Porphyromonas gingivalis in periodontitis development process[J]. Int J Stomatol, 2017, 44(6): 660-663.
16 D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592.
17 He DW, Li XY, Zhang FZ, et al. Dec2 inhibits ma-crophage pyroptosis to promote periodontal homeostasis[J]. J Periodontal Implant Sci, 2022, 52(1): 28-38.
18 Wang LN, Jin HW, Ye DD, et al. Enterococcus faecalis lipoteichoic acid-induced NLRP3 inflammasome via the activation of the nuclear factor kappa B pathway[J]. J Endod, 2016, 42(7): 1093-1100.
19 Ran SJ, Huang J, Liu B, et al. Enterococcus Faecalis activates NLRP3 inflammasomes leading to increased interleukin-1 beta secretion and pyroptosis of THP-1 macrophages[J]. Microb Pathog, 2021, 154: 104761.
20 Evavold CL, Ruan JB, Tan YH, et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages[J]. Immunity, 2018, 48(1): 35.e6-44.e6.
21 Burn GL, Foti A, Marsman G, et al. The neutrophil[J]. Immunity, 2021, 54(7): 1377-1391.
22 Vanek NN, Simon SI, Jacques-Palaz K, et al. Enterococcus faecalis aggregation substance promotes opsonin-independent binding to human neutrophils via a complement receptor type 3-mediated mechanism[J]. FEMS Immunol Med Microbiol, 1999, 26(1): 49-60.
23 Rakita RM, Vanek NN, Jacques-Palaz K, et al. Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation[J]. Infect Immun, 1999, 67(11): 6067-6075.
24 Smith RE, Salamaga B, Szkuta P, et al. Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system[J]. PLoS Pathog, 2019, 15(5): e1007730.
25 Shon W, Lim S, Bae KS, et al. The expression of alpha4 integrins by human polymorphonuclear neutrophils in response to sonicated extracts of Enterococcus faecalis [J]. J Endod, 2005, 31(5): 369-372.
26 Qian C, Cao XT. Dendritic cells in the regulation of immunity and inflammation[J]. Semin Immunol, 2018, 35: 3-11.
27 Elashiry MM, Elashiry M, Zeitoun R, et al. Enterococcus faecalis induces differentiation of immune-aberrant dendritic cells from murine bone marrow-derived stem cells[J]. Infect Immun, 2020, 88(11): e00338-e00320.
28 Kathirvel S, Mani M, Gopala Krishnan GK, et al. Molecular characterization of Enterococcus faecalis isolates from urinary tract infection and interaction between Enterococcus faecalis encountered dendri-tic and natural killer cells[J]. Microb Pathog, 2020, 140: 103944.
29 Furrie E, MacFarlane S, Cummings JH, et al. Systemic antibodies towards mucosal bacteria in ulce-rative colitis and Crohn’s disease differentially activate the innate immune response[J]. Gut, 2004, 53(1): 91-98.
30 Park SY, Shin YP, Kim CH, et al. Immune evasion of Enterococcus faecalis by an extracellular gelati-nase that cleaves C3 and iC3b[J]. J Immunol, 2008, 181(9): 6328-6336.
31 Ali YM, Sim RB, Schwaeble W, et al. Enterococcus faecalis escapes complement-mediated killing via recruitment of complement factor H[J]. J Infect Dis, 2019, 220(6): 1061-1070.
32 Harvey BS, Baker CJ, Edwards MS. Contributions of complement and immunoglobulin to neutrophil-mediated killing of enterococci[J]. Infect Immun, 1992, 60(9): 3635-3640.
33 Benachour A, Ladjouzi R, Le Jeune A, et al. The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylase PgdA (EF1843) is required for Enterococcus faecalis virulence[J]. J Bacteriol, 2012, 194(22): 6066-6073.
[1] 梁芷瑩,赵苑汐,朱嘉妮,苏勤. 288例前牙显微根尖手术临床资料的回顾性分析[J]. 国际口腔医学杂志, 2023, 50(2): 166-171.
[2] 朱嘉妮,苏勤. 难治性根尖周炎根管内及根尖外菌群的研究现状[J]. 国际口腔医学杂志, 2022, 49(3): 283-289.
[3] 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295.
[4] 税钰森,吕潇颖,李静雅,杨燃. 粪肠球菌在口腔及全身系统性疾病中的致病相关因素及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 225-234.
[5] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[6] 杨子,侯本祥. 持续性根尖周炎根管内外生物膜特性的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 238-243.
[7] 毛璐,鞠侯雨,任国欣. 程序性细胞死亡受体-1与其配体信号通路的调控及其在头颈鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 560-565.
[8] 林冬佳, 彭志翔, 高燕. 粪肠球菌与巨噬细胞相互作用机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 433-438.
[9] 吕晶, 凌均棨. 根管定位数字化导板的研究进展[J]. 国际口腔医学杂志, 2018, 45(2): 233-238.
[10] 衣晓伟, 黄定明, 张岚. 糖尿病患者牙髓根尖周病的发病机制及临床管理[J]. 国际口腔医学杂志, 2018, 45(2): 214-218.
[11] 李格格, 潘佳慧, 唐秋玲, 刘歆婵, 侯玉帛, 于维先. 牙龈素促进牙龈卟啉单胞菌免疫逃逸的机制[J]. 国际口腔医学杂志, 2017, 44(5): 519-522.
[12] 雷期音, 陈柯. 年轻恒牙牙髓再生的临床应用进展[J]. 国际口腔医学杂志, 2017, 44(3): 267-272.
[13] 刘琨,侯本祥. 粪肠球菌和变异链球菌脂磷壁酸的生物学活性[J]. 国际口腔医学杂志, 2017, 44(1): 118-124.
[14] 高静,申静,张海峰,靳淑凤. 锥形束CT与根尖片对实验性根尖周炎根管治疗结果的评估[J]. 国际口腔医学杂志, 2016, 43(3): 292-294.
[15] 刘梦余 叶玲 汪成林. 白细胞介素-17及其在口腔疾病中的作用[J]. 国际口腔医学杂志, 2015, 42(6): 728-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[10] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .