国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (3): 290-295.doi: 10.7518/gjkq.2022034
Liu Qianxi1(),Wu Jiayi2,Ren Biao3,Huang Ruijie1()
摘要:
口腔微生物不同种群之间的相互作用显著影响口腔疾病的发生发展。粪肠球菌是口腔中常见的条件性致病菌,当免疫防御机制发生变化时,易引发感染,如难治性根尖周炎等。粪肠球菌可单独形成生物膜,并可分泌明胶酶和溶细胞素等多种物质导致感染。粪肠球菌与白色念珠菌、金黄色葡萄球菌、牙龈卟啉单胞菌、放线菌属、链球菌属等常从根尖周炎、牙周炎病灶中共同检出,存在显著的相互作用关系。本文通过粪肠球菌与其他口腔的常见口腔致病菌的相互作用促进口腔相关疾病发生发展的研究进展进行综述,为牙周炎、根尖周炎等感染性疾病的防治策略研究提供参考。
中图分类号:
1 | Falsetta ML, Koo H. Beyond mucosal infection: a role for C. albicans-streptococcal interactions in the pathogenesis of dental caries[J]. Curr Oral Health Rep, 2014, 1(1): 86-93. |
2 | Abisado RG, Benomar S, Klaus JR, et al. Bacterial quorum sensing and microbial community interactions[J]. mBio, 2018, 9(3): e02331-e02317. |
3 | Stubbendieck RM, Vargas-Bautista C, Straight PD. Bacterial communities: interactions to scale[J]. Front Microbiol, 2016, 7: 1234. |
4 | Colombo AV, Barbosa GM, Higashi D, et al. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with perio-dontitis and periodontal health[J]. J Med Microbiol, 2013, 62(Pt 10): 1592-1600. |
5 | Johnson EM, Flannagan SE, Sedgley CM. Coaggregation interactions between oral and endodontic Enterococcus faecalis and bacterial species isolated from persistent apical periodontitis[J]. J Endod, 2006, 32(10): 946-950. |
6 | Siqueira JF Jr, Rôças IN. Diversity of endodontic microbiota revisited[J]. J Dent Res, 2009, 88(11): 969-981. |
7 | Chávez de Paz LE, Davies JR, Bergenholtz G, et al. Strains of Enterococcus faecalis differ in their ability to coexist in biofilms with other root canal bacteria[J]. Int Endod J, 2015, 48(10): 916-925. |
8 | Gao Y, Jiang XQ, Lin DJ, et al. The starvation resistance and biofilm formation of Enterococcus faecalis in coexistence with Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus[J]. J Endod, 2016, 42(8): 1233-1238. |
9 | 龚闽, 侯本祥. 慢性根尖周炎感染根管内粪肠球菌和白色念珠菌的检测[J]. 北京口腔医学, 2012, 20(6): 310-313. |
Gong M, Hou BX. Determination of root canal microorganisms isolated from teeth with chronic apical periodontitis[J]. Beijing J Stomatol, 2012, 20(6): 310-313. | |
10 | Bertolini M, Ranjan A, Thompson A, et al. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection[J]. PLoS Pathog, 2019, 15(4): e1007717. |
11 | Krishnamoorthy AL, Lemus AA, Solomon AP, et al. Interactions between Candida albicans and Enterococcus faecalis in an organotypic oral epithelial model[J]. Microorganisms, 2020, 8(11): 1771. |
12 | Bertolini MM, Xu H, Sobue T, et al. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes[J]. Mol Oral Microbiol, 2015, 30(4): 307-322. |
13 | Shekh RM, Roy U. Biochemical characterization of an anti-Candida factor produced by Enterococcus faecalis[J]. BMC Microbiol, 2012, 12: 132. |
14 | Graham CE, Cruz MR, Garsin DA, et al. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans[J]. Proc Natl Acad Sci U S A, 2017, 114(17): 4507-4512. |
15 | Deng L, Zou L, Wu J, et al. Voriconazole inhibits cross-kingdom interactions between Candida albicans and Actinomyces viscosus through the ergoste-rol pathway[J]. Int J Antimicrob Agents, 2019, 53(6): 805-813. |
16 | Qiu W, Ren B, Dai HQ, et al. Clotrimazole and eco-nazole inhibit Streptococcus mutans biofilm and vi-rulence in vitro[J]. Arch Oral Biol, 2017, 73: 113-120. |
17 | 王峥, 周学东, 任彪. 白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究[J]. 四川大学学报(医学版), 2020, 51(6): 742-748. |
Wang Z, Zhou XD, Ren B. Ergosterol pathway of Candida albicans promotes the growth and carioge-nic virulence of Streptococcus mutans[J]. J Sichuan Univ (Med Sci Ed), 2020, 51(6): 742-748. | |
18 | Rôças IN, Hülsmann M, Siqueira JF Jr. Microorga-nisms in root canal-treated teeth from a German population[J]. J Endod, 2008, 34(8): 926-931. |
19 | Munson MA, Pitt-Ford T, Chong B, et al. Molecular and cultural analysis of the microflora associated with endodontic infections[J]. J Dent Res, 2002, 81(11): 761-766. |
20 | Deng DM, Hoogenkamp MA, Exterkate RA, et al. Influence of Streptococcus mutans on Enterococcus faecalis biofilm formation[J]. J Endod, 2009, 35(9): 1249-1252. |
21 | Li X, Hoogenkamp MA, Ling J, et al. Diversity of Streptococcus mutans strains in bacterial interspecies interactions[J]. J Basic Microbiol, 2014, 54(2): 97-103. |
22 | Jhajharia K, Parolia A, Shetty KV, et al. Biofilm in endodontics: a review[J]. J Int Soc Prev Community Dent, 2015, 5(1): 1-12. |
23 | Yonezawa H, Kuramitsu HK. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5[J]. Antimicrob Agents Chemother, 2005, 49(2): 541-548. |
24 | Fukushima H, Kelstrup J, Fukushima S, et al. Chara-cterization and mode of action of a purified bacteriocin from the oral bacterium Streptococcus mutans RM-10[J]. Arch Oral Biol, 1985, 30(3): 229-234. |
25 | Frandsen EV, Pedrazzoli V, Kilian M. Ecology of viridans streptococci in the oral cavity and pharynx[J]. Oral Microbiol Immunol, 1991, 6(3): 129-133. |
26 | Chávez de Paz L, Svensäter G, Dahlén G, et al. Streptococci from root canals in teeth with apical periodontitis receiving endodontic treatment[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 100(2): 232-241. |
27 | Schirrmeister JF, Liebenow AL, Braun G, et al. Detection and eradication of microorganisms in root-filled teeth associated with periradicular lesions: an in vivo study[J]. J Endod, 2007, 33(5): 536-540. |
28 | Vickerman MM, Flannagan SE, Jesionowski AM, et al. A genetic determinant in Streptococcus gordonii Challis encodes a peptide with activity similar to that of enterococcal sex pheromone cAM373, which facilitates intergeneric DNA transfer[J]. J Bacteriol, 2010, 192(10): 2535-2545. |
29 | Mansfield JM, Herrmann P, Jesionowski AM, et al. Streptococcus gordonii pheromone s.g.cAM373 may influence the reservoir of antibiotic resistance determinants of Enterococcus faecalis origin in the oral metagenome[J]. J Med Microbiol, 2017, 66(11): 1635-1639. |
30 | Sedgley CM, Molander A, Flannagan SE, et al. Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp.[J]. Oral Microbiol Immunol, 2005, 20(1): 10-19. |
31 | Sedgley CM, Lee EH, Martin MJ, et al. Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo[J]. J Endod, 2008, 34(5): 570-574. |
32 | Showsh SA, De Boever EH, Clewell DB. Vancomycin resistance plasmid in Enterococcus faecalis that encodes sensitivity to a sex pheromone also produced by Staphylococcus aureus[J]. Antimicrob Ag-ents Chemother, 2001, 45(7): 2177-2178. |
33 | Vickerman MM, Mansfield JM. Streptococcal pepti-des that signal Enterococcus faecalis cells carrying the pheromone-responsive conjugative plasmid pAM-373[J]. Mol Oral Microbiol, 2019, 34(6): 254-262. |
34 | Cariati P, Cabello-Serrano A, Monsalve-Iglesias F, et al. Meningitis and subdural empyema as complication of pterygomandibular space abscess upon tooth extraction[J]. J Clin Exp Dent, 2016, 8(4): e469-e472. |
35 | Grundmann H, Aires-de-Sousa M, Boyce J, et al. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat[J]. Lancet, 2006, 368(9538): 874-885. |
36 | Klevens RM, Edwards JR, Tenover FC, et al. Chan-ges in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003[J]. Clin Infect Dis, 2006, 42(3): 389-391. |
37 | Firth N, Fink PD, Johnson L, et al. A lipoprotein signal peptide encoded by the staphylococcal conjugative plasmid pSK41 exhibits an activity resembling that of Enterococcus faecalis pheromone cAD1[J]. J Bacteriol, 1994, 176(18): 5871-5873. |
38 | Zhu WM, Clark N, Patel JB. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureus in vitro[J]. Antimicrob Agents Chemother, 2013, 57(1): 212-219. |
39 | Zhu WM, Murray PR, Huskins WC, et al. Dissemination of an Enterococcus Inc18-Like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2010, 54(10): 4314-4320. |
40 | Sakko M, Tjäderhane L, Rautemaa-Richardson R. Microbiology of root canal infections[J]. Prim Dent J, 2016, 5(2): 84-89. |
41 | Yoon DL, Kim S, Song H, et al. Detection of bacterial species in chronic periodontitis tissues at diffe-rent stages of disease severity[J]. J Bacteriol Virol, 2015, 45(4): 364-371. |
42 | Li XY, Zhou LM, Takai H, et al. Aggregatibacter actinomycetemcomitans lipopolysaccharide regulates bone sialoprotein gene transcription[J]. J Cell Biochem, 2012, 113(9): 2822-2834. |
43 | Im J, Baik JE, Kim KW, et al. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells[J]. Int Immunol, 2015, 27(8): 381-391. |
44 | Im J, Baik JE, Lee D, et al. Lipoteichoic acid of Enterococcus faecalis interferes with Porphyromonas gingivalis lipopolysaccharide signaling via IRAK-M upregulation in human periodontal ligament cells[J]. Mol Oral Microbiol, 2020, 35(4): 146-157. |
45 | Kim HG, Kim NR, Gim MG, et al. Lipoteichoic a-cid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice[J]. J Immunol, 2008, 180(4): 2553-2561. |
46 | Fukushima H, Kelstrup J, Fukushima S, et al. Chara-cterization and mode of action of a purified bacteriocin from the oral bacterium Streptococcus mutans RM-10[J]. Arch Oral Biol, 1985, 30(3): 229-234. |
47 | Viçosa GN, Botta C, Ferrocino I, et al. Staphylococcus aureus undergoes major transcriptional reorganization during growth with Enterococcus faecalis in milk[J]. Food Microbiol, 2018, 73: 17-28. |
48 | Nogueira Viçosa G, Vieira Botelho C, Botta C, et al. Impact of co-cultivation with Enterococcus faecalis over growth, enterotoxin production and gene expression of Staphylococcus aureus in broth and fresh cheeses[J]. Int J Food Microbiol, 2019, 308: 108291. |
49 | Jung S, Park OJ, Kim AR, et al. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm[J]. J Microbiol, 2019, 57(4): 310-315. |
50 | Kim AR, Kang MJ, Yoo YJ, et al. Lactobacillus plantarum lipoteichoic acid disrupts mature Enterococcus faecalis biofilm[J]. J Microbiol, 2020, 58(4): 314-319. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 徐智博,孟秀萍. 粪肠球菌逃逸宿主免疫防御机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 613-617. |
[3] | 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328. |
[4] | 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216. |
[5] | 杨偲睿,任彪,彭显,徐欣. 药物联用逆转白色念珠菌唑类耐药机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 511-520. |
[6] | 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396. |
[7] | 熊开新,邹玲. 白色念珠菌、黏性放线菌与根面龋相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 187-191. |
[8] | 陈静,葛子瑜,俞婷婷,章燕珍. 帕金森病与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 218-224. |
[9] | 李帆,张利娟,谭凯璇,张颖,卢洁,李姗姗,杨芳. 基于重水拉曼技术的氯己定对白色念珠菌抑菌效能的研究[J]. 国际口腔医学杂志, 2021, 48(1): 35-40. |
[10] | 易祖木,王昕宇,伍颖颖. 糖尿病患者口腔细菌多样性的变化[J]. 国际口腔医学杂志, 2020, 47(5): 522-529. |
[11] | 税钰森,吕潇颖,李静雅,杨燃. 粪肠球菌在口腔及全身系统性疾病中的致病相关因素及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 225-234. |
[12] | 胡垚,程磊,郭强,任彪. 白假丝酵母与口腔常见细菌相互作用的进展研究[J]. 国际口腔医学杂志, 2019, 46(6): 663-669. |
[13] | 文书琼,郭君怡,戴文晓,王迪侃,王智. 白色念珠菌影响口腔黏膜癌变的机制进展[J]. 国际口腔医学杂志, 2019, 46(6): 705-710. |
[14] | 姜雪,黄淡远,廖文. 磷酸钛氧钾激光应用于口腔疾病治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 456-462. |
[15] | 李伟,周京琳. 口腔代谢组学研究[J]. 国际口腔医学杂志, 2019, 46(3): 249-252. |
|