国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (4): 392-396.doi: 10.7518/gjkq.2022039
摘要:
口腔微生物之间的相互作用对口腔疾病的发生至关重要。变异链球菌和白色念珠菌是幼儿龋病常见的致龋微生物。两种微生物之间可通过葡糖基转移酶、蔗糖、SigX因子、群体感应信号分子法尼醇、化合物代谢等多种方式相互协同或者拮抗致龋。本文主要综述了二者的致龋机制、在生物膜中的协同和抑制作用以及混合生物膜抗菌疗法如抗菌剂、化合物、光动力疗法等。从生物膜角度阐释两种微生物与龋病发生的关系以及抑制生物膜活性的方法,为开发龋病治疗新策略提供了新视角。
中图分类号:
1 | Listl S, Galloway J, Mossey PA, et al. Global economic impact of dental diseases[J]. J Dent Res, 2015, 94(10): 1355-1361. |
2 | Yoo HJ, Jwa SK. Inhibitory effects of β-caryophyllene on Streptococcus mutans biofilm[J]. Arch Oral Biol, 2018, 88: 42-46. |
3 | Kleinberg I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis[J]. Crit Rev Oral Biol Med, 2002, 13(2): 108-125. |
4 | Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process[J]. Community Dent Oral Epidemiol, 2005, 33(4): 248-255. |
5 | 辛秉昌, 徐仰龙, 李艳莉, 等. 生物膜中不同种属微生物的交流与合作[J]. 中国科学: 生命科学, 2010, 40(11): 1002-1013. |
Xin BC, Xu YL, Li YL, et al. Communication and cooperation of different microorganisms within biofilms[J]. Sci Sin (Vitae), 2010, 40(11): 1002-1013. | |
6 | Raja M, Hannan A, Ali K. Association of oral candidal carriage with dental caries in children[J]. Caries Res, 2010, 44(3): 272-276. |
7 | Metwalli KH, Khan SA, Krom BP, et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation[J]. PLoS Pathog, 2013, 9(10): e100-3616. |
8 | Xiao J, Klein MI, Falsetta ML, et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm[J]. PLoS Pathog, 2012, 8(4): e1002623. |
9 | Falsetta ML, Klein MI, Lemos JA, et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo [J]. Antimicrob Agents Chemother, 2012, 56(12): 6201-6211. |
10 | Islam B, Khan SN, Khan AU. Dental caries: from infection to prevention[J]. Med Sci Monit, 2007, 13(11): RA196-RA203. |
11 | 徐蓉蓉, 王斌, 葛久禹. 口腔链球菌密度感应信号系统comE基因及luxS基因的检测分析[J]. 华西口腔医学杂志, 2011, 29(4): 355-357. |
Xu RR, Wang B, Ge JY. Detection and analysis of comE and luxS genes in quorum sensing signal pathway from Streptococcus oralis [J]. West China J Stomatol, 2011, 29(4): 355-357. | |
12 | Rodrigues CF, Rodrigues ME, Silva S, et al. Candida glabrata biofilms: how far have we come[J]. J Fungi (Basel), 2017, 3(1): 11. |
13 | Chevalier M, Ranque S, Prêcheur I. Oral fungal-bacterial biofilm models in vitro: a review[J]. Med Mycol, 2018, 56(6): 653-667. |
14 | Jacobsen ID, Wilson D, Wächtler B, et al. Candida albicans dimorphism as a therapeutic target[J]. Expert Rev Anti Infect Ther, 2012, 10(1): 85-93. |
15 | Jin Y, Samaranayake LP, Samaranayake Y, et al. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars[J]. Arch Oral Biol, 2004, 49(10): 789-798. |
16 | 袁有华, 白丽. 分子生物学技术在念珠菌分类鉴定中的应用[J]. 中华检验医学杂志, 2008, 31(2): 220-222. |
Yuan YH, Bai L.Application of molecular biology techniques in the classification and identification of Candida [J]. Chin J Lab Med, 2008, 31(2): 220-222. | |
17 | Klinke T, Guggenheim B, Klimm W, et al. Dental caries in rats associated with Candida albicans [J]. Caries Res, 2011, 45(2): 100-106. |
18 | Sztajer H, Szafranski SP, Tomasch J, et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans [J]. ISME J, 2014, 8(11): 2256-2271. |
19 | Xiao J, Moon Y, Li LH, et al. Candida albicans carriage in children with severe early childhood caries (S-ECC) and maternal relatedness[J]. PLoS One, 2016, 11(10): e0164242. |
20 | Falsetta ML, Klein MI, Colonne PM, et al. Symbio-tic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo [J]. Infect Immun, 2014, 82(5): 1968-1981. |
21 | Kim D, Sengupta A, Niepa TH, et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites[J]. Sci Rep, 2017, 7: 41332. |
22 | Willems HM, Kos K, Jabra-Rizk MA, et al. Candida albicans in oral biofilms could prevent caries[J]. Pathog Dis, 2016, 74(5): ftw039. |
23 | Hwang G, Marsh G, Gao L, et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans [J]. J Dent Res, 2015, 94(9): 1310-1317. |
24 | Marsh PD. Sugar, fluoride, pH and microbial homeostasis in dental plaque[J]. Proc Finn Dent Soc, 1991, 87(4): 515-525. |
25 | 王峥, 周学东, 任彪. 白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究[J]. 四川大学学报(医学版), 2020, 51(6): 742-748. |
Wang Z, Zhou XD, Ren B. Ergosterol pathway of Candida albicans promotes the growth and cariogenic virulence of Streptococcus mutans [J]. J Si-chuan Univ (Med Sci), 2020, 51(6): 742-748. | |
26 | Cury JA, Rebelo MA, Del Bel Cury AA, et al. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose[J]. Caries Res, 2000, 34(6): 491-497. |
27 | Ribeiro CC, Tabchoury CP, Del Bel Cury AA, et al. Effect of starch on the cariogenic potential of sucrose[J]. Br J Nutr, 2005, 94(1): 44-50. |
28 | Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol[J]. Appl Environ Microbiol, 2001, 67(7): 2982-2992. |
29 | Fernandes RA, Monteiro DR, Arias LS, et al. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation[J]. Biofouling, 2016, 32(3): 329-338. |
30 | Barbosa JO, Rossoni RD, Vilela SF, et al. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans [J]. PLoS One, 2016, 11(3): e0150457. |
31 | Takenaka S, Ohsumi T, Noiri Y. Evidence-based stra-tegy for dental biofilms: current evidence of mouthwashes on dental biofilm and gingivitis[J]. Jpn Dent Sci Rev, 2019, 55(1): 33-40. |
32 | Rahmani-Badi A, Sepehr S, Babaie-Naiej H. A combination of cis-2-decenoic acid and chlorhexidine removes dental plaque[J]. Arch Oral Biol, 2015, 60(11): 1655-1661. |
33 | Monteiro DR, Arias LS, Fernandes RA, et al. Role of tyrosol on Candida albicans, Candida glabrata and Streptococcus mutans biofilms developed on different surfaces[J]. Am J Dent, 2017, 30(1): 35-39. |
34 | Yassin SA, German MJ, Rolland SL, et al. Inhibition of multispecies biofilms by a fluoride-releasing dental prosthesis copolymer[J]. J Dent, 2016, 48: 62-70. |
35 | Fumes AC, Romualdo PC, Monteiro RM, et al. Influence of pre-irradiation time employed in antimicrobial photodynamic therapy with diode laser[J]. Lasers Med Sci, 2018, 33(1): 67-73. |
36 | Trigo-Gutierrez JK, Sanitá PV, Tedesco AC, et al. Effect of chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm[J]. Photodiagnosis Photodyn Ther, 2018, 24: 212-219. |
37 | Kim D, Liu Y, Benhamou RI, et al. Bacterial-derived exopolysaccharides enhance antifungal drug tolerance in a cross-kingdom oral biofilm[J]. ISME J, 2018, 12(6): 1427-1442. |
38 | Feldman M, Shenderovich J, Lavy E, et al. A sustained-release membrane of thiazolidinedione-8: effect on formation of a candida/bacteria mixed biofilm on hydroxyapatite in a continuous flow model[J]. Biomed Res Int, 2017, 2017: 3510124. |
39 | Elshinawy MI, Al-Madboly LA, Ghoneim WM, et al. Synergistic effect of newly introduced root canal medicaments; ozonated olive oil and chitosan nano-particles, against persistent endodontic pathogens[J]. Front Microbiol, 2018, 9: 1371. |
40 | Kıvanç M, Barutca B, Koparal AT, et al. Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability[J]. Mater Sci Eng C Mater Biol Appl, 2018, 91: 115-124. |
[1] | 高若凡,夏斌. 基于慢性疾病管理理念的重度低龄儿童龋管理方法[J]. 国际口腔医学杂志, 2023, 50(3): 341-346. |
[2] | 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236. |
[3] | 龚涛,李雨庆,周学东. 变异链球菌糖转运及其调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 506-510. |
[4] | 杨偲睿,任彪,彭显,徐欣. 药物联用逆转白色念珠菌唑类耐药机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 511-520. |
[5] | 李洪芳,陈中,张素欣. 免疫检查点抑制剂联合放射治疗在头颈部鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 614-620. |
[6] | 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475. |
[7] | 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295. |
[8] | 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219. |
[9] | 刘程程, 丁一. 妊娠期常见口腔感染性疾病的临床诊疗和管理策略[J]. 国际口腔医学杂志, 2021, 48(6): 621-628. |
[10] | 黄培勍,彭显,徐欣. 口腔挥发性硫化物的产生与针对性防治的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 592-599. |
[11] | 范宇,程磊. 吸烟影响口腔微环境及其在龋病进展中的作用[J]. 国际口腔医学杂志, 2021, 48(5): 609-613. |
[12] | 李诗佳,陈秋宇,邹静,黄睿洁. 尼古丁对口腔细菌单独或混合培养时菌群数目调控的研究[J]. 国际口腔医学杂志, 2021, 48(3): 305-311. |
[13] | 熊开新,邹玲. 白色念珠菌、黏性放线菌与根面龋相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 187-191. |
[14] | 李帆,张利娟,谭凯璇,张颖,卢洁,李姗姗,杨芳. 基于重水拉曼技术的氯己定对白色念珠菌抑菌效能的研究[J]. 国际口腔医学杂志, 2021, 48(1): 35-40. |
[15] | 杨志雷,刘宝盈. 龋病牙菌斑微生态研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 506-514. |
|