国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 609-613.doi: 10.7518/gjkq.2021087
摘要:
流行病学研究表明:吸烟与龋病的发生发展密切相关。现代龋病病因学指出:口腔微环境的改变,包括唾液的流率、缓冲能力、成分等,以及口腔微生物组成的改变,导致产酸耐酸菌成为优势菌,脱矿-再矿化平衡被打破,导致了龋病的形成。此外,社会经济地位、口腔保健意识等其他龋病相关因素也会影响龋病的发生发展。研究显示:吸烟会对口腔微环境产生直接和间接的影响,进而促进龋病的发生。本文将从这一方面对吸烟的致龋机制作一综述。
中图分类号:
[1] |
Mainali P, Pant S, Rodriguez AP, et al. Tobacco and cardiovascular health[J]. Cardiovasc Toxicol, 2015, 15(2):107-116.
doi: 10.1007/s12012-014-9280-0 |
[2] |
Petersson GH, Twetman S. Tobacco use and caries increment in young adults: a prospective observational study[J]. BMC Res Notes, 2019, 12(1):218.
doi: 10.1186/s13104-019-4253-9 pmid: 30971314 |
[3] |
Golpasand Hagh L, Zakavi F, Ansarifar S, et al. Association of dental caries and salivary sIgA with tobacco smoking[J]. Aust Dent J, 2013, 58(2):219-223.
doi: 10.1111/adj.12059 pmid: 23713643 |
[4] | Rad M, Kakoie S, Niliye Brojeni F, et al. Effect of long-term smoking on whole-mouth salivary flow rate and oral health[J]. J Dent Res Dent Clin Dent Prospects, 2010, 4(4):110-114. |
[5] |
Thomson WM, Chalmers JM, Spencer AJ, et al. Me-dication and dry mouth: findings from a cohort study of older people[J]. J Public Health Dent, 2000, 60(1):12-20.
pmid: 10734611 |
[6] |
Gao X, Jiang S, Koh D, et al. Salivary biomarkers for dental caries[J]. Periodontol 2000, 2016, 70(1):128-141.
doi: 10.1111/prd.12100 |
[7] |
Konić-Ristić A, Šavikin K, Zdunić G, et al. Acute effects of black currant consumption on salivary flow rate and secretion rate of salivary immunoglobulin a in healthy smokers[J]. J Med Food, 2015, 18(4):483-488.
doi: 10.1089/jmf.2013.0149 pmid: 25734687 |
[8] | Khan GJ, Mehmood R Salah-ud-Din, et al. Effects of long-term use of tobacco on taste receptors and salivary secretion[J]. J Ayub Med Coll Abbottabad, 2003, 15(4):37-39. |
[9] |
Rosa MB, Fernandes MDS, Bonjardim LR, et al. Evaluation of oral mechanical and gustatory sensitivities and salivary cotinine levels in adult smokers[J]. Acta Odontol Scand, 2020, 78(4):256-264.
doi: 10.1080/00016357.2019.1694978 |
[10] |
Pavlidis P, Gouveris C, Kekes G, et al. Changes in electrogustometry thresholds, tongue tip vascularization, density and form of the fungiform papillae in smokers[J]. Eur Arch Otorhinolaryngol, 2014, 271(8):2325-2331.
doi: 10.1007/s00405-014-3003-9 pmid: 24633309 |
[11] | Khan AM, Narayanan VS, Puttabuddi JH, et al. Comparison of taste threshold in smokers and non-smokers using electrogustometry fungiform papillae count: a case control study[J]. J Clin Diagn Res, 2016, 10(5): ZC101-ZC105. |
[12] |
Ferragut JM, da Cunha MR, Carvalho CA, et al. E-pithelial-stromal interactions in salivary glands of rats exposed to chronic passive smoking[J]. Arch Oral Biol, 2011, 56(6):580-587.
doi: 10.1016/j.archoralbio.2010.11.017 pmid: 21168828 |
[13] |
Lenander-Lumikari M, Loimaranta V. Saliva and dental caries[J]. Adv Dent Res, 2000, 14:40-47.
doi: 10.1177/08959374000140010601 |
[14] |
Khemiss M, Ben Khelifa M, Ben Saad H. Preliminary findings on the correlation of saliva pH, buffe-ring capacity, flow rate and consistency in relation to waterpipe tobacco smoking[J]. Libyan J Med, 2017, 12(1):1289651.
doi: 10.1080/19932820.2017.1289651 pmid: 28266252 |
[15] | Wu JY, Li MY, Huang RJ. The effect of smoking on caries-related microorganisms[J]. Tob Induc Dis, 2019, 17:32. |
[16] |
Avşar A, Darka O, Bodrumlu EH, et al. Evaluation of the relationship between passive smoking and sa-livary electrolytes, protein, secretory IgA, sialic acid and amylase in young children[J]. Arch Oral Biol, 2009, 54(5):457-463.
doi: 10.1016/j.archoralbio.2009.01.017 |
[17] |
Benowitz NL, Hukkanen J, Jacob P. Nicotine chemi-stry, metabolism, kinetics and biomarkers[J]. Handb Exp Pharmacol, 2009(192):29-60.
doi: 10.1007/978-3-540-69248-5_2 pmid: 19184645 |
[18] |
Alkhattabi N, Todd I, Negm O, et al. Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells[J]. Toxicol Lett, 2018, 299:40-46.
doi: S0378-4274(18)31875-7 pmid: 30227238 |
[19] |
Duan X, Wu T, Xu X, et al. Smoking may lead to marginal bone loss around non-submerged implants during bone healing by altering salivary microbiome: a prospective study[J]. J Periodontol, 2017, 88(12):1297-1308.
doi: 10.1902/jop.2017.160808 |
[20] |
Tsigarida AA, Dabdoub SM, Nagaraja HN, et al. The influence of smoking on the peri-implant microbiome[J]. J Dent Res, 2015, 94(9):1202-1217.
doi: 10.1177/0022034515590581 pmid: 26124222 |
[21] |
Wu J, Peters BA, Dominianni C, et al. Cigarette smo-king and the oral microbiome in a large study of A-merican adults[J]. ISME J, 2016, 10(10):2435-2446.
doi: 10.1038/ismej.2016.37 |
[22] |
Kenney EB, Saxe SR, Bowles RD. The effect of ci-garette smoking on anaerobiosis in the oral cavity[J]. J Periodontol, 1975, 46(2):82-85.
pmid: 235017 |
[23] |
Macgregor ID. Effects of smoking on oral ecology. A review of the literature[J]. Clin Prev Dent, 1989, 11(1):3-7.
pmid: 2689047 |
[24] |
Brook I. The impact of smoking on oral and nasopharyngeal bacterial flora[J]. J Dent Res, 2011, 90(6):704-710.
doi: 10.1177/0022034510391794 pmid: 21558542 |
[25] |
Sopori M. Effects of cigarette smoke on the immune system[J]. Nat Rev Immunol, 2002, 2(5):372-377.
doi: 10.1038/nri803 pmid: 12033743 |
[26] |
El-Ezmerli NF, Gregory RL. Effect of nicotine on biofilm formation of Streptococcus mutans isolates from smoking and non-smoking subjects[J]. J Oral Microbiol, 2019, 11(1):1662275.
doi: 10.1080/20002297.2019.1662275 pmid: 31552130 |
[27] |
Huang R, Li M, Gregory RL. Nicotine promotes Streptococcus mutans extracellular polysaccharide synjournal, cell aggregation and overall lactate dehydrogenase activity[J]. Arch Oral Biol, 2015, 60(8):1083-1090.
doi: 10.1016/j.archoralbio.2015.04.011 pmid: 25985036 |
[28] |
Li M, Huang R, Zhou X, et al. Effect of nicotine on cariogenic virulence of Streptococcus mutans[J]. Folia Microbiol (Praha), 2016, 61(6):505-512.
doi: 10.1007/s12223-016-0465-8 |
[29] |
Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives[J]. J Dent Res, 2011, 90(3):294-303.
doi: 10.1177/0022034510379602 pmid: 20924061 |
[30] |
Avşar A, Darka O, Topaloğlu B, et al. Association of passive smoking with caries and related salivary biomarkers in young children[J]. Arch Oral Biol, 2008, 53(10):969-974.
doi: 10.1016/j.archoralbio.2008.05.007 pmid: 18672230 |
[31] |
Dubois AE, Bennett ZC, Khalid U, et al. Nicotine: its stimulating and inhibitory effects on oral microorganisms[J]. Fine Focus, 2014, 1:63-75.
doi: 10.33043/FF |
[32] |
Cogo K, Montan MF, Bergamaschi Cde C, et al. In vitro evaluation of the effect of nicotine, cotinine, and caffeine on oral microorganisms[J]. Can J Microbiol, 2008, 54(6):501-508.
doi: 10.1139/W08-032 |
[33] |
Valdebenito B, Tullume-Vergara PO, González W, et al. In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm[J]. Mol Oral Microbiol, 2018, 33(2):168-180.
doi: 10.1111/omi.12209 pmid: 29237244 |
[34] |
Li M, Huang R, Zhou X, et al. Effect of nicotine on dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis[J]. FEMS Microbiol Lett, 2014, 350(2):125-132.
doi: 10.1111/fml.2014.350.issue-2 |
[35] |
Niskanen MC, Mattila PT, Niinimaa AO, et al. Behavioural and socioeconomic factors associated with the simultaneous occurrence of periodontal disease and dental caries[J]. Acta Odontol Scand, 2020, 78(3):196-202.
doi: 10.1080/00016357.2019.1679389 pmid: 31686553 |
[36] |
Bilodeau EA, Guggenheimer J. Relevance of smo-king interventions for dental clinic patients with smo-king-related disease[J]. J Public Health Dent, 2018, 78(2):154-158.
doi: 10.1111/jphd.2018.78.issue-2 |
[37] |
Csémy L, Sovinová H, Dvořáková Z. Socioeconomic and gender inequalities in smoking. Findings from the Czech National Tobacco Surveys 2012-2015[J]. Cent Eur J Public Health, 2018, 26(1):28-33.
doi: 10.21101/cejph.a4923 |
[38] | Csikar J, Wyborn C, Dyer T, et al. The self-reported oral health status and dental attendance of smokers and non-smokers[J]. Community Dent Health, 2013, 30(1):26-29. |
[1] | 杨静,柳登高. 内镜下激光碎石术治疗唾液腺结石病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 704-710. |
[2] | 赵玲帆, 周杨, 叶鑫鑫, 张强. 肾移植术后腮腺低分化黏液表皮样癌1例[J]. 国际口腔医学杂志, 2023, 50(4): 419-422. |
[3] | 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328. |
[4] | 高若凡,夏斌. 基于慢性疾病管理理念的重度低龄儿童龋管理方法[J]. 国际口腔医学杂志, 2023, 50(3): 341-346. |
[5] | 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216. |
[6] | 龚涛,李雨庆,周学东. 变异链球菌糖转运及其调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 506-510. |
[7] | 叶玉琳,江莉婷,高益鸣. 舍格伦综合征唾液腺中自噬现象的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 556-560. |
[8] | 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396. |
[9] | 余舒星,邹静,李雨庆. 基于唾液检测病毒感染性生物标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 189-196. |
[10] | 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219. |
[11] | 刘程程, 丁一. 妊娠期常见口腔感染性疾病的临床诊疗和管理策略[J]. 国际口腔医学杂志, 2021, 48(6): 621-628. |
[12] | 马平川,李春洁,李龙江. 唾液腺导管癌的诊疗研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 459-467. |
[13] | 李诗佳,陈秋宇,邹静,黄睿洁. 尼古丁对口腔细菌单独或混合培养时菌群数目调控的研究[J]. 国际口腔医学杂志, 2021, 48(3): 305-311. |
[14] | 沈忆芬,刘超,汤颖,顾永春. 电子烟暴露对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 347-353. |
[15] | 杨志雷,刘宝盈. 龋病牙菌斑微生态研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 506-514. |
|