国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (2): 187-191.doi: 10.7518/gjkq.2021044
摘要:
根面龋是老年人龋病的主要表现形式。由于牙根部牙骨质及牙本质中相对更高的有机物组成和其表面特殊的微环境,根面龋的发生过程相对复杂。白色念珠菌和黏性放线菌作为口腔常驻共生菌群,具有产酸、耐酸和酵解有机物等性能,在根面龋发生发展中扮演着重要角色。本文就白色念珠菌、黏性放线菌与根面龋的研究进展作一综述,以期从真菌-细菌控制的角度为根面龋的临床防治提供新思路。
中图分类号:
[1] |
Cai J, Palamara J, Manton DJ, et al. Status and pro-gress of treatment methods for root caries in the last decade: a literature review[J]. Aust Dent J, 2018,63(1):34-54.
pmid: 28833210 |
[2] |
Takahashi N, Nyvad B. Ecological hypojournal of dentin and root caries[J]. Caries Res, 2016,50(4):422-431.
doi: 10.1159/000447309 pmid: 27458979 |
[3] |
Mayanagi G, Igarashi K, Washio J, et al. pH response and tooth surface solubility at the tooth/bacteria interface[J]. Caries Res, 2017,51(2):160-166.
pmid: 28147347 |
[4] | Hayes M, Brady P, Burke FM, et al. Failure rates of class Ⅴ restorations in the management of root caries in adults-a systematic review[J]. Gerodontology, 2016,33(3):299-307. |
[5] |
Bizhang M, Ellerbrock BI, Preza D, et al. Detection of nine microorganisms from the initial carious root lesions using a TaqMan-based real-time PCR[J]. Oral Dis, 2011,17(7):642-652.
pmid: 21605286 |
[6] |
Do T, Damé-Teixeira N, Naginyte M, et al. Root surface biofilms and caries[J]. Monogr Oral Sci, 2017,26:26-34.
pmid: 29050018 |
[7] | 蒋倩. 老年人群根龋和冠部龋口腔微生物群落结构分析[J]. 重庆: 重庆医科大学, 2019. |
Jiang Q. The oral microbiome in the elderly with root and coronal caries[J]. Chongqing:Chongqing Medical Universeity, 2019. | |
[8] |
Chen L, Qin BC, Du MQ, et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health[J]. PLoS One, 2015,10(2):e0117064.
doi: 10.1371/journal.pone.0117064 pmid: 25658087 |
[9] | Nyvad B, Kilian M. Microflora associated with experimental root surface caries in humans[J]. Infect Immun, 1990,58(6):1628-1633. |
[10] |
Dige I, Nyvad B. Candida species in intact in vivo biofilm from carious lesions[J]. Arch Oral Biol, 2019,101:142-146.
doi: 10.1016/j.archoralbio.2019.03.017 pmid: 30933902 |
[11] | Pereira D, Seneviratne CJ, Koga-Ito CY, et al. Is the oral fungal pathogen Candida albicans a cariogen[J]. Oral Dis, 2018,24(4):518-526. |
[12] | Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013,4(2):119-128. |
[13] |
Schlafer S, Kamp A, Garcia JE. A confocal microscopy based method to monitor extracellular pH in fungal biofilms[J]. FEMS Yeast Res, 2018,18(5). doi: 10.1093/femsyr/foy049.
pmid: 29518226 |
[14] |
Caroline de Abreu Brandi T, Portela MB, Lima PM, et al. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries[J]. Microb Pathog, 2016,100:51-55.
doi: 10.1016/j.micpath.2016.09.003 pmid: 27612675 |
[15] |
Sampaio AA, Souza SE, Ricomini-Filho AP, et al. Candida albicans increases dentine demineralization provoked by Streptococcus mutans biofilm[J]. Caries Res, 2019,53(3):322-331.
doi: 10.1159/000494033 pmid: 30448846 |
[16] | Qiu RM, Li WQ, Lin Y, et al. Genotypic diversity and cariogenicity of Candida albicans from children with early childhood caries and caries-free children[J]. BMC Oral Heal, 2015,15(1):1-6. |
[17] |
Ev LD, Damé-Teixeira N, Do T, et al. The role of Candida albicans in root caries biofilms: an RNA-seq analysis[J]. J Appl Oral Sci, 2020,28:e20190578.
doi: 10.1590/1678-7757-2019-0578 pmid: 32348446 |
[18] |
Deng L, Li W, He Y, et al. Cross-kingdom interaction of Candida albicans and Actinomyces viscosus elevated cariogenic virulence[J]. Arch Oral Biol, 2019,100:106-112.
doi: 10.1016/j.archoralbio.2019.02.008 pmid: 30822704 |
[19] | Switalski LM, Butcher WG. An in vitro model for adhesion of bacteria to human tooth root surfaces[J]. Arch Oral Biol, 1994,39(2):155-161. |
[20] | Komiyama K, Khandelwal RL, Heinrich SE. Glycogen synthetic and degradative activities by Actinomyces viscosus and Actinomyces naeslundii of root surface caries and noncaries sites[J]. Caries Res, 1988,22(4):217-225. |
[21] |
Guo YQ, Wei CL, Liu CX, et al. Inhibitory effects of oral Actinomyces on the proliferation, virulence and biofilm formation of Candida albicans[J]. Arch Oral Biol, 2015,60(9):1368-1374.
doi: 10.1016/j.archoralbio.2015.06.015 pmid: 26143096 |
[22] |
Arzmi MH, Dashper S, Catmull D, et al. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent[J]. FEMS Yeast Res, 2015, 15(5): fov038.
pmid: 26054855 |
[23] |
Arzmi MH, Alnuaimi AD, Dashper S, et al. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent[J]. Med Mycol, 2016,54(8):856-864.
doi: 10.1093/mmy/myw042 pmid: 27354487 |
[24] | Cavalcanti IM, Del Bel Cury AA, Jenkinson HF, et al. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle[J]. Mol Oral Microbiol, 2017,32(1):60-73. |
[25] |
Morse DJ, Wilson MJ, Wei X, et al. Modulation of Candida albicans virulence in in vitro biofilms by oral bacteria[J]. Lett Appl Microbiol, 2019,68(4):337-343.
pmid: 30825340 |
[26] |
Deng L, Zou L, Wu J, et al. Voriconazole inhibits cross-kingdom interactions between Candida albicans and Actinomyces viscosus through the ergosterol pathway[J]. Int J Antimicrob Agents, 2019,53(6):805-813.
pmid: 30818001 |
[27] |
Heasman PA, Ritchie M, Asuni A, et al. Gingival recession and root caries in the ageing population: a critical evaluation of treatments[J]. J Clin Periodontol, 2017,44(Suppl 18):S178-S193.
doi: 10.1111/jcpe.12676 |
[28] |
Wang L, Li CY, Weir MD, et al. Novel multifunctional dental bonding agent for class-Ⅴ restorations to inhibit periodontal biofilms[J]. RSC Adv, 2017,7(46):29004-29014.
doi: 10.1039/C6RA28711E pmid: 29910954 |
[29] |
Zhang N, Melo MA, Chen C, et al. Development of a multifunctional adhesive system for prevention of root caries and secondary caries[J]. Dent Mater, 2015,31(9):1119-1131.
pmid: 26187532 |
[30] |
Zhou W, Zhou X, Huang X, et al. Antibacterial and remineralizing nanocomposite inhibit root caries biofilms and protect root dentin hardness at the margins[J]. J Dent, 2020,97:103344.
doi: 10.1016/j.jdent.2020.103344 pmid: 32315666 |
[1] | 杨偲睿,任彪,彭显,徐欣. 药物联用逆转白色念珠菌唑类耐药机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 511-520. |
[2] | 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396. |
[3] | 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295. |
[4] | 李帆,张利娟,谭凯璇,张颖,卢洁,李姗姗,杨芳. 基于重水拉曼技术的氯己定对白色念珠菌抑菌效能的研究[J]. 国际口腔医学杂志, 2021, 48(1): 35-40. |
[5] | 文书琼,郭君怡,戴文晓,王迪侃,王智. 白色念珠菌影响口腔黏膜癌变的机制进展[J]. 国际口腔医学杂志, 2019, 46(6): 705-710. |
[6] | 冯瑾,吴红崑. 抗菌牙科材料在根面龋治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 475-480. |
[7] | 杜倩,任彪,周学东,徐欣. 根面龋微生态的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 326-332. |
[8] | 郝一龙,周瑜,陈谦明. 正中菱形舌炎发病危险因素的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 333-338. |
[9] | 许华 刘英群. 变异链球菌耐氟菌株的致龋能力[J]. 国际口腔医学杂志, 2013, 40(5): 698-700. |
[10] | 李艳莉,杨德琴,亓庆国,. 白色假丝酵母菌与龋病的相关性研究[J]. 国际口腔医学杂志, 2008, 35(S1): -. |
[11] | 陆史俊综述 魏昕审校. 变异链球菌耐酸分子机制的研究进展[J]. 国际口腔医学杂志, 2008, 35(5): 534-534~536. |
[12] | 鲁莉英综述 邹静审校. 白色假丝酵母菌与龋病的关系[J]. 国际口腔医学杂志, 2008, 35(1): 97-99. |
[13] | 姜葳综述 梁景平审校. 变形链球菌耐酸反应机制的研究进展[J]. 国际口腔医学杂志, 2007, 34(01): 4-6. |
[14] | 林靖雯,陈谦明. 富组蛋白抗白色念珠菌作用的研究进展[J]. 国际口腔医学杂志, 2005, 32(04): 294-296. |
[15] | 秦伟,林正梅. 感染根管内白色念珠菌的检测和治疗[J]. 国际口腔医学杂志, 2005, 32(03): 236-238. |
|