国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (6): 705-710.doi: 10.7518/gjkq.2019104
Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi()
摘要:
微生物感染是癌症发生的重要因素,目前,越来越多的研究支持这样的观点:机会性白色念珠菌通过患者的免疫抑制状态,增加患者患癌的概率和肿瘤转移的风险。最近的研究结果表明,白色念珠菌可能通过以下几种机制来促进癌症发生:产生致癌副产物、引发炎症以及诱导辅助性T细胞17反应。本文就白色念珠菌影响口腔黏膜癌变机制的研究进展作一综述,以期能够进一步阐明白色念珠菌和癌症发生之间的关系,有望为预防和治疗口腔黏膜癌变提供新思路。
中图分类号:
[1] | McManus BA, Coleman DC . Molecular epidemiology, phylogeny and evolution of Candida albicans[J]. Infect Genet Evol, 2014,21:166-178. |
[2] | Barrett AW, Kingsmill VJ, Speight PM . The frequency of fungal infection in biopsies of oral mucosal lesions[J]. Oral Dis, 1998,4(1):26-31. |
[3] | Roed-Petersen B, Renstrup G, Pindborg JJ . Candida in oral leukoplakias. A histologic and exfoliative cytologic study[J]. Scand J Dent Res, 1970,78(4):323-328. |
[4] | O’Grady JF, Reade PC . Candida albicans as a promoter of oral mucosal neoplasia[J]. Carcinogenesis, 1992,13(5):783-786. |
[5] | 章魁华, 王洪君, 秦锦霞 , 等. 白色念珠菌感染对增生口腔粘膜上皮的影响[J]. 中华口腔医学杂志, 1994,29(6):339-341, 384. |
Zhang KH, Wang HJ, Qin JX , et al. Effect of candidal infection on the hyperplastic oral epithelium[J]. Chin J Stomatol, 1994,29(6):339-341, 384. | |
[6] | Naglik JR, König A, Hube B , et al. Candida albicans-epithelial interactions and induction of mucosal innate immunity[J]. Curr Opin Microbiol, 2017,40:104-112. |
[7] | Ho J, Yang X, Nikou SA , et al. Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor[J]. Nat Commun, 2019,10(1):2297. |
[8] | Filler SG . Candida-host cell receptor-ligand interactions[J]. Curr Opin Microbiol, 2006,9(4):333-339. |
[9] | Wächtler B, Citiulo F, Jablonowski N , et al. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process[J]. PLoS One, 2012,7(5):e36952. |
[10] | Allert S, Förster TM, Svensson CM , et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers[J]. MBio, 2018,9(3):e00915-e00918. |
[11] | Naglik JR, Moyes DL, Wächtler B , et al. Candida albicans interactions with epithelial cells and mucosal immunity[J]. Microbes Infect, 2011,13(12/13):963-976. |
[12] | Hornbach A, Heyken A, Schild L , et al. The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils[J]. Infect Immun, 2009,77(12):5216-5224. |
[13] | Furlaneto MC, Favero D, França EJ , et al. Effects of human blood red cells on the haemolytic capability of clinical isolates of Candida tropicalis[J]. J Biomed Sci, 2015,22:13. |
[14] | Tao L, Du H, Guan G , et al. Discovery of a “white-gray-opaque” tristable phenotypic switching system in Candida albicans: roles of non-genetic diversity in host adaptation[J]. PLoS Biol, 2014,12(4):e1001830. |
[15] | Zhu W, Filler SG . Interactions of Candida albicans with epithelial cells[J]. Cell Microbiol, 2010,12(3):273-282. |
[16] | Noble SM, Gianetti BA, Witchley JN . Candida albicans cell-type switching and functional plasticity in the mammalian host[J]. Nat Rev Microbiol, 2017,15(2):96-108. |
[17] | Krogh P . The role of yeasts in oral cancer by means of endogenous nitrosation[J]. Acta Odontol Scand, 1990,48(1):85-88. |
[18] | Sanjaya PR, Gokul S, Gururaj Patil B , et al. Candida in oral pre-cancer and oral cancer[J]. Med Hypotheses, 2011,77(6):1125-1128. |
[19] | Seitz HK, Cho CH . Contribution of alcohol and tobacco use in gastrointestinal cancer development[J]. Methods Mol Biol, 2009,472:217-241. |
[20] | Seitz HK, Stickel F . Molecular mechanisms of alcohol-mediated carcinogenesis[J]. Nat Rev Cancer, 2007,7(8):599-612. |
[21] | Hooper SJ, Wilson MJ, Crean SJ . Exploring the link between microorganisms and oral cancer: a systematic review of the literature[J]. Head Neck, 2009,31(9):1228-1239. |
[22] | Tsai ST, Wong TY, Ou CY , et al. The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer[J]. Int J Cancer, 2014,135(10):2424-2436. |
[23] | Alnuaimi AD, Ramdzan AN, Wiesenfeld D , et al. Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects[J]. Oral Dis, 2016,22(8):805-814. |
[24] | Bakri MM, Rich AM, Cannon RD , et al. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism[J]. Mol Oral Microbiol, 2015,30(1):27-38. |
[25] | Elinav E, Nowarski R, Thaiss CA , et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms[J]. Nat Rev Cancer, 2013,13(11):759-771. |
[26] | Garrett WS . Cancer and the microbiota[J]. Science, 2015,348(6230):80-86. |
[27] | Brennan CA, Garrett WS . Gut microbiota, inflammation, and colorectal cancer[J]. Annu Rev Microbiol, 2016,70:395-411. |
[28] | Sun Y, Liu N, Guan X , et al. Immunosuppression induced by chronic inflammation and the progression to oral squamous cell carcinoma[J]. Mediators Inflamm, 2016,2016:5715719. |
[29] | Nasry WHS, Rodriguez-Lecompte JC, Martin CK . Role of COX-2/PGE2 mediated inflammation in oral squamous cell carcinoma[J]. Cancers (Basel), 2018,10(10):E348. |
[30] | Sonis ST, Amaral Mendes R . Could the PI3K canonical pathway be a common link between chronic inflammatory conditions and oral carcinogenesis[J]. J Oral Pathol Med, 2016,45(7):469-474. |
[31] | Mantovani A, Allavena P, Sica A , et al. Cancer-related inflammation[J]. Nature, 2008,454(7203):436-444. |
[32] | Netea MG, Sutmuller R, Hermann C , et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells[J]. J Immunol, 2004,172(6):3712-3718. |
[33] | Drummond RA, Franco LM, Lionakis MS . Human CARD9: a critical molecule of fungal immune surveillance[J]. Front Immunol, 2018,9:1836. |
[34] | Terayama Y, Matsuura T, Ozaki K . Lack of correlation between aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 protein expression and promoter methylation in squamous cell carcinoma accompanying Candida albicans-induced inflammation[J]. PLoS One, 2016,11(7):e0159090. |
[35] | Feller L, Khammissa RA, Chandran R , et al. Oral candidosis in relation to oral immunity[J]. J Oral Pathol Med, 2014,43(8):563-569. |
[36] | Richardson JP, Moyes DL . Adaptive immune responses to Candida albicans infection[J]. Virulence, 2015,6(4):327-337. |
[37] | Netea MG, Joosten LA, van der Meer JW, et al. Immune defence against Candida fungal infections[J]. Nat Rev Immunol, 2015,15(10):630-642. |
[38] | Becker KL, Ifrim DC, Quintin J , et al. Antifungal innate immunity: recognition and inflammatory networks[J]. Semin Immunopathol, 2015,37(2):107-116. |
[39] | Tang J, Lin G, Langdon WY , et al. Regulation of C- type lectin receptor-mediated antifungal immunity[J]. Front Immunol, 2018,9:123. |
[40] | Dennehy KM, Willment JA, Williams DL , et al. Reciprocal regulation of IL-23 and IL-12 following co- activation of Dectin-1 and TLR signaling pathways[J]. Eur J Immunol, 2009,39(5):1379-1386. |
[41] | Rodríguez M, Márquez S, de la Rosa JV, et al. Fungal pattern receptors down-regulate the inflammatory response by a cross-inhibitory mechanism independent of interleukin-10 production[J]. Immunology, 2017,150(2):184-198. |
[42] | Mengesha BG, Conti HR . The role of IL-17 in protection against mucosal Candida infections[J]. J Fungi (Basel), 2017,3(4):E52. |
[43] | Kirchner FR, Littringer K, Altmeier S , et al. Persistence of Candida albicans in the oral mucosa induces a curbed inflammatory host response that is independent of immunosuppression[J]. Front Immunol, 2019,10:330. |
[44] | Amatya N, Garg AV, Gaffen SL . IL-17 signaling: the yin and the yang[J]. Trends Immunol, 2017,38(5):310-322. |
[45] | Martínez-López M, Iborra S, Conde-Garrosa R , et al. Microbiota sensing by mincle-syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity[J]. Immunity, 2019,50(2): 446-461.e9. |
[46] | Uribe-Querol E, Rosales C . Neutrophils in cancer: two sides of the same coin[J]. J Immunol Res, 2015,2015:983698. |
[47] | Magalhaes MA, Glogauer JE, Glogauer M . Neutrophils and oral squamous cell carcinoma: lessons learned and future directions[J]. J Leukoc Biol, 2014,96(5):695-702. |
[48] | Langowski JL, Zhang X, Wu L , et al. IL-23 promotes tumour incidence and growth[J]. Nature, 2006,442(7101):461-465. |
[1] | 古丽其合热·阿布来提,秦旭,朱光勋. 线粒体自噬在牙周炎发生发展过程中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 68-73. |
[2] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[3] | 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462. |
[4] | 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262. |
[5] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[6] | 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126. |
[7] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[8] | 杨偲睿,任彪,彭显,徐欣. 药物联用逆转白色念珠菌唑类耐药机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 511-520. |
[9] | 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396. |
[10] | 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475. |
[11] | 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295. |
[12] | 李归平,秦旭,朱光勋. 腺苷酸活化蛋白激酶在牙周病发生发展中的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 343-348. |
[13] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
[14] | 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26. |
[15] | 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93. |
|