国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (5): 522-529.doi: 10.7518/gjkq.2020095

• 口腔微生态专栏 • 上一篇    下一篇

糖尿病患者口腔细菌多样性的变化

易祖木1(),王昕宇1,伍颖颖2()   

  1. 1.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
    2.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2020-01-05 修回日期:2020-05-02 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 伍颖颖
  • 作者简介:易祖木,学士,Email: yizumu@outlook.com
  • 基金资助:
    国家自然科学基金(81970966);四川大学优秀青年学者科研基金(2017SCU04A21)

Bacterial diversity of oral flora in patients with diabetes

Yi Zumu1(),Wang Xinyu1,Wu Yingying2()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-01-05 Revised:2020-05-02 Online:2020-09-01 Published:2020-09-16
  • Contact: Yingying Wu
  • Supported by:
    National Natural Science Foundation of China(81970966);NResearch Fund for Sichuan University Excellent Young Scholars(2017SCU04A21)

摘要:

口腔菌群的生态平衡失调与口腔疾病及全身性疾病密切相关。牙周病与糖尿病之间存在密切的双向关系。牙周病的始动因素是细菌,糖尿病作为牙周病的主要危险因素之一,是否能通过影响人体口腔细菌多样性来影响牙周病的发生发展仍旧存在争议。多数学者认为,细菌可能是糖尿病和牙周疾病相互作用的关键一环,糖尿病患者口腔细菌多样性的改变可能在其中起到较为关键的作用;部分学者则认为,糖尿病患者口腔细菌多样性与非糖尿病患者的差异并不明显。本文综述了不同的观点,并总结糖尿病影响口腔菌群的可能机制。糖尿病患者唾液、龈沟液中葡萄糖水平的改变、炎症及炎症因子的变化是糖尿病对口腔细菌多样性产生影响的主要原因。

关键词: 糖尿病, 口腔疾病, 细菌多样性

Abstract:

The ecological imbalance of oral flora is closely related to oral and systemic diseases. Studies have found a close two-way relationship between periodontal disease and diabetes. The starting factor of periodontal disease is bacteria. Diabetes is one of the main risk factors for periodontal disease. Whether diabetes affects the development of periodontal disease by affecting the structure of human oral flora remains controversial. Most researchers believe that bacteria may be the key link in the interaction between diabetes and periodontal disease. The change in oral bacterial diversity in patients with diabetes may play a key role. Some believe that the oral bacterial diversity of patients with and without diabetes does not differ. This article reviews the different perspectives of the effects of diabetes on the structure of oral flora in recent years and describes possible mechanisms. The changes in glucose levels in saliva and gingival crevicular fluid, inflammation, and inflammatory factors in patients with diabetes are the main reasons for the influence of diabetes on oral bacterial diversity.

Key words: diabetes, oral disease, bacterial diversity

中图分类号: 

  • R780.2
[1] American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020[J]. Diabetes Care, 2020,43(Suppl 1):S14-S31.
pmid: 31862745
[2] Nguyen ATM, Akhter R, Garde S, et al. The association of periodontal disease with the complications of diabetes mellitus. A systematic review[J]. Diabetes Res Clin Pract, 2020,165:108244.
doi: 10.1016/j.diabres.2020.108244 pmid: 32526263
[3] Preshaw PM, Foster N, Taylor JJ. Cross-susceptibility between periodontal disease and type 2 diabetes mel-litus: an immunobiological perspective[J]. Periodon-tol 2000, 2007,45:138-157.
[4] Chee B, Park B, Bartold PM. Periodontitis and type Ⅱ diabetes: a two-way relationship[J]. Int J Evid Based Healthc, 2013,11(4):317-329.
pmid: 24298927
[5] Kumar A, Sharma DS, Verma M, et al. Association between periodontal disease and gestational diabetes mellitus—a prospective cohort study[J]. J Clin Perio-dontol, 2018,45(8):920-931.
[6] Kocher T, König J, Borgnakke WS, et al. Periodontal complications of hyperglycemia/diabetes mellitus: epidemiologic complexity and clinical challenge[J]. Periodontol 2000, 2018,78(1):59-97.
pmid: 30198134
[7] Sudhakara P, Gupta A, Bhardwaj A, et al. Oral dys-biotic communities and their implications in systemic diseases[J]. Dent J, 2018,6(2):10.
doi: 10.3390/dj6020010
[8] Verhulst MJL, Loos BG, Gerdes VEA, et al. Evaluating all potential oral complications of diabetes mellitus[J]. Front Endocrinol (Lausanne), 2019,10:56.
doi: 10.3389/fendo.2019.00056
[9] Yamashita Y, Takeshita T. The oral microbiome and human health[J]. J Oral Sci, 2017,59(2):201-206.
doi: 10.2334/josnusd.16-0856 pmid: 28637979
[10] Zaura E, Keijser BJ, Huse SM, et al. Defining the healthy “core microbiome” of oral microbial com-munities[J]. BMC Microbiol, 2009,9:259.
pmid: 20003481
[11] Benn A, Heng N, Broadbent JM, et al. Studying the human oral microbiome: challenges and the evolution of solutions[J]. Aust Dent J, 2018,63(1):14-24.
pmid: 28853139
[12] Jia G, Zhi A, Lai PFH, et al. The oral microbiota—a mechanistic role for systemic diseases[J]. Br Dent J, 2018,224(6):447-455.
doi: 10.1038/sj.bdj.2018.217 pmid: 29569607
[13] Sorsa T, Alassiri S, Grigoriadis A, et al. Active MMP-8 (aMMP-8) as a grading and staging biomarker in the periodontitis classification[J]. Diagnostics (Basel), 2020,10(2):61.
[14] Jin J, Zhang X, Lu Z, et al. Simvastatin inhibits lipopolysaccharide-induced osteoclastogenesis and reduces alveolar bone loss in experimental periodontal disease[J]. J Periodont Res, 2014,49(4):518-526.
pmid: 24117880
[15] Golub LM, Lee HM. Periodontal therapeutics: current host-modulation agents and future directions[J]. Periodontol 2000, 2020,82(1):186-204.
pmid: 31850625
[16] Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome[J]. Mol Metab, 2016,5(9):795-803.
pmid: 27617202
[17] Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation[J]. J Dent Res, 2013,92(6):485-491.
doi: 10.1177/0022034513487559
[18] Lamont RJ, Koo H, Hajishengallis G. The oral micro-biota: dynamic communities and host interactions[J]. Nat Rev Microbiol, 2018,16(12):745-759.
pmid: 30301974
[19] Lamont RJ, Koo H, Hajishengallis G. The oral micro-biota: dynamic communities and host interactions[J]. Nat Rev Microbiol, 2018,16(12):745-759.
pmid: 30301974
[20] Qin JJ, Li YR, Cai ZM, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012,490(7418):55-60.
pmid: 23023125
[21] Taylor JJ, Preshaw PM, Lalla E. A review of the evi-dence for pathogenic mechanisms that may link periodontitis and diabetes[J]. J Clin Periodontol, 2013,40(Suppl 14):S113-S134.
doi: 10.1111/jcpe.12059
[22] Jepsen S, Caton JG, Albandar JM, et al. Periodontal manifestations of systemic diseases and developmen-tal and acquired conditions: consensus report of workgroup 3 of the 2017 world workshop on the classification of periodontal and peri-implant dis-eases and conditions[J]. J Clin Periodontol, 2018,45(Suppl 20):S219-S229.
doi: 10.1111/jcpe.2018.45.issue-S20
[23] Hajishengallis G, Lamont RJ. Breaking bad: mani-pulation of the host response by Porphyromonas gingivalis[J]. Eur J Immunol, 2014,44(2):328-338.
doi: 10.1002/eji.201344202
[24] Borgnakke WS, Ylöstalo PV, Taylor GW, et al. Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence[J]. J Clin Periodontol, 2013,40(Suppl 14):S135-S152.
doi: 10.1111/jcpe.12080
[25] Ai DM, Huang RC, Wen J, et al. Integrated metage-nomic data analysis demonstrates that a loss of diver-sity in oral microbiota is associated with periodontitis[J]. BMC Genomics, 2017,18(Suppl 1):1041.
doi: 10.1186/s12864-016-3254-5 pmid: 28198672
[26] Babaev EA, Balmasova IP, Mkrtumyan AM, et al. Metagenomic analysis of gingival sulcus microbiota and pathogenesis of periodontitis associated with type 2 diabetes mellitus[J]. Bull Exp Biol Med, 2017,163(6):718-721.
doi: 10.1007/s10517-017-3888-6 pmid: 29063339
[27] Aoyama N, Suzuki JI, Kobayashi N, et al. Increased oral Porphyromonas gingivalis prevalence in cardio-vascular patients with uncontrolled diabetes mellitus[J]. Int Heart J, 2018,59(4):802-807.
doi: 10.1536/ihj.17-480 pmid: 29877308
[28] Aemaimanan P, Amimanan P, Taweechaisupapong S. Quantification of key periodontal pathogens in insulin-dependent type 2 diabetic and non-diabetic patients with generalized chronic periodontitis[J]. Anaerobe, 2013,22:64-68.
doi: 10.1016/j.anaerobe.2013.06.010 pmid: 23827459
[29] Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque[J]. J Clin Periodontol, 1998,25(2):134-144.
doi: 10.1111/j.1600-051x.1998.tb02419.x pmid: 9495612
[30] Ebersole JL, Holt SC, Hansard R, et al. Microbiologic and immunologic characteristics of periodontal disease in Hispanic Americans with type 2 diabetes[J]. J Periodontol, 2008,79(4):637-646.
pmid: 18380556
[31] Casarin RC, Barbagallo A, Meulman T, et al. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis[J]. J Periodont Res, 2013,48(1):30-36.
doi: 10.1111/j.1600-0765.2012.01498.x pmid: 22762355
[32] da Cruz GA, de Toledo S, Sallum EA, et al. Clinical and laboratory evaluations of non-surgical periodon-tal treatment in subjects with diabetes mellitus[J]. J Periodontol, 2008,79(7):1150-1157.
doi: 10.1902/jop.2008.070503 pmid: 18597596
[33] Sakalauskiene J, Kubilius R, Gleiznys A, et al. Rela-tionship of clinical and microbiological variables in patients with type 1 diabetes mellitus and periodontitis[J]. Med Sci Monit, 2014,20:1871-1877.
pmid: 25294115
[34] Joaquim CR, Miranda TS, Marins LM, et al. The combined and individual impact of diabetes and smoking on key subgingival periodontal pathogens in patients with chronic periodontitis[J]. J Periodont Res, 2018,53(3):315-323.
doi: 10.1111/jre.12516 pmid: 29110296
[35] Signat B, Roques C, Poulet P, et al. Role of Fuso-bacterium nucleatum in periodontal health and disease[J]. Curr Issues Mol Biol, 2011,13(2):25-36.
pmid: 21220789
[36] Fischer J, Jung N, Robinson N, et al. Sex differences in immune responses to infectious diseases[J]. Infection, 2015,43(4):399-403.
pmid: 25956991
[37] van Lunzen J, Altfeld M. Sex differences in infec-tious diseases-common but neglected[J]. J Infect Dis, 2014,209(Suppl 3):S79-S80.
doi: 10.1093/infdis/jiu159
[38] Field CA, Gidley MD, Preshaw PM, et al. Investigation and quantification of key periodontal pathogens in patients with type 2 diabetes[J]. J Periodont Res, 2012,47(4):470-478.
doi: 10.1111/j.1600-0765.2011.01455.x pmid: 22220967
[39] Ogawa T, Honda-Ogawa M, Ikebe K, et al. Charac-terizations of oral microbiota in elderly nursing home residents with diabetes[J]. J Oral Sci, 2017,59(4):549-555.
pmid: 28993578
[40] Spratt DA, Greenman J, Schaffer AG. Capnocyto-phaga gingivalis: effects of glucose concentration on growth and hydrolytic enzyme production[J]. Micro-biology, 1996,142(Pt 8):2161-2164.
[41] Ciantar M, Gilthorpe MS, Hurel SJ, et al. Capnocy-tophaga spp. in periodontitis patients manifesting diabetes mellitus[J]. J Periodontol, 2005,76(2):194-203.
doi: 10.1902/jop.2005.76.2.194 pmid: 15974842
[42] Kumar PS, Griffen AL, Moeschberger ML, et al. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis[J]. J Clin Microbiol, 2005,43(8):3944-3955.
doi: 10.1128/JCM.43.8.3944-3955.2005 pmid: 16081935
[43] Paster BJ, Boches SK, Galvin JL, et al. Bacterial diversity in human subgingival plaque[J]. J Bacteriol, 2001,183(12):3770-3783.
doi: 10.1128/JB.183.12.3770-3783.2001 pmid: 11371542
[44] Janem WF, Scannapieco FA, Sabharwal A, et al. Salivary inflammatory markers and microbiome in normoglycemic lean and obese children compared to obese children with type 2 diabetes[J]. PLoS One, 2017,12(3):e0172647.
doi: 10.1371/journal.pone.0172647 pmid: 28253297
[45] Zhou M, Rong RC, Munro D, et al. Investigation of the effect of type 2 diabetes mellitus on subgingival plaque microbiota by high-throughput 16S rDNA pyrosequencing[J]. PLoS One, 2013,8(4):e61516.
doi: 10.1371/journal.pone.0061516 pmid: 23613868
[46] Demmer RT, Jacobs DR Jr, Singh R, et al. Periodontal bacteria and prediabetes prevalence in ORIGINS: the oral infections, glucose intolerance, and insulin re-sistance study[J]. J Dent Res, 2015,94(9 Suppl):201S-211S.
pmid: 26082387
[47] Morou-Bermudez E, Burne RA. Genetic and physiologic characterization of urease of Actinomyces naeslundii [J]. Infect Immun, 1999,67(2):504-512.
doi: 10.1128/IAI.67.2.504-512.1999 pmid: 9916052
[48] Desvarieux M, Demmer RT, Rundek T, et al. Perio-dontal microbiota and carotid in Tima-media thick-ness: the oral infections and vascular disease epide-miology study (INVEST)[J]. Circulation, 2005,111(5):576-582.
doi: 10.1161/01.CIR.0000154582.37101.15 pmid: 15699278
[49] Boström L, Bergström J, Dahlén G, et al. Smoking and subgingival microflora in periodontal disease[J]. J Clin Periodontol, 2001,28(3):212-219.
doi: 10.1034/j.1600-051x.2001.028003212.x pmid: 11284533
[50] Yuan K, Chang CJ, Hsu PC, et al. Detection of putative periodontal pathogens in non-insulin-dependent diabetes mellitus and non-diabetes mellitus by poly-merase chain reaction[J]. J Periodont Res, 2001,36(1):18-24.
doi: 10.1034/j.1600-0765.2001.90613.x pmid: 11246700
[51] Apatzidou DA, Riggio MP, Kinane DF. Impact of smoking on the clinical, microbiological and im-munological parameters of adult patients with perio-dontitis[J]. J Clin Periodontol, 2005,32(9):973-983.
doi: 10.1111/j.1600-051X.2005.00788.x pmid: 16104962
[52] Buzinin SM, Alabsi AM, Tan AT, et al. Effects of nonsurgical periodontal therapy on clinical response, microbiological profile, and glycemic control in Ma-laysian subjects with type 1 diabetes[J]. Sci World J, 2014,2014:232535.
[53] Katz PP, Wirthlin MR Jr, Szpunar SM, et al. Epide-miology and prevention of periodontal disease in individuals with diabetes[J]. Diabetes Care, 1991,14(5):375-385.
doi: 10.2337/diacare.14.5.375 pmid: 2060449
[54] Goodson JM, Hartman ML, Shi P, et al. The salivary microbiome is altered in the presence of a high sa-livary glucose concentration[J]. PLoS One, 2017,12(3):e0170437.
doi: 10.1371/journal.pone.0170437 pmid: 28249034
[55] Saeb ATM, Al-Rubeaan KA, Aldosary K, et al. Re-lative reduction of biological and phylogenetic diver-sity of the oral microbiota of diabetes and pre-diabetes patients[J]. Microb Pathog, 2019,128:215-229.
doi: 10.1016/j.micpath.2019.01.009 pmid: 30625362
[56] Tam J, Hoffmann T, Fischer S, et al. Obesity alters composition and diversity of the oral microbiota in patients with type 2 diabetes mellitus independently of glycemic control[J]. PLoS One, 2018,13(10):e0204724.
doi: 10.1371/journal.pone.0204724 pmid: 30273364
[57] Zhang C, Cleveland K, Schnoll-Sussman F, et al. Identification of low abundance microbiome in clinical samples using whole genome sequencing[J]. Genome Biol, 2015,16:265.
doi: 10.1186/s13059-015-0821-z pmid: 26614063
[58] Yang Y, Liu SL, Wang YH, et al. Changes of saliva microbiota in the onset and after the treatment of diabetes in patients with periodontitis[J]. Aging (Albany NY), 2020,12. doi: 10.18632/aging.103399.
[59] Valentini L, Pinto A, Bourdel-Marchasson I, et al. Impact of personalized diet and probiotic supple-mentation on inflammation, nutritional parameters and intestinal microbiota—the “RISTOMED project”: randomized controlled trial in healthy older people[J]. Clin Nutr, 2015,34(4):593-602.
doi: 10.1016/j.clnu.2014.09.023 pmid: 25453395
[60] Ardakani MR, Moeintaghavi A, Haerian A, et al. Correlation between levels of sulcular and capillary blood glucose[J]. J Contemp Dent Pract, 2009,10(2):10-17.
pmid: 19279967
[61] Longo PL, Dabdoub S, Kumar P, et al. Glycaemic status affects the subgingival microbiome of diabetic patients[J]. J Clin Periodontol, 2018,45(8):932-940.
doi: 10.1111/jcpe.12908 pmid: 29742293
[62] Bénit P, Letouzé E, Rak M, et al. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling[J]. Biochim Biophys Acta, 2014,1837(8):1330-1337.
doi: 10.1016/j.bbabio.2014.03.013 pmid: 24699309
[63] Rubic T, Lametschwandtner G, Jost S, et al. Triggering the succinate receptor GPR91 on dendritic cells en-hances immunity[J]. Nat Immunol, 2008,9(11):1261-1269.
doi: 10.1038/ni.1657 pmid: 18820681
[64] Stabler CL, Li Y, Stewart JM, et al. Engineering im-munomodulatory biomaterials for type 1 diabetes[J]. Nat Rev Mater, 2019,4(6):429-450.
doi: 10.1038/s41578-019-0112-5 pmid: 32617176
[65] Farina R, Severi M, Carrieri A, et al. Whole meta-genomic shotgun sequencing of the subgingival mi-crobiome of diabetics and non-diabetics with different periodontal conditions[J]. Arch Oral Biol, 2019,104:13-23.
doi: 10.1016/j.archoralbio.2019.05.025 pmid: 31153098
[66] Kato T, Yamazaki K, Nakajima M, et al. Oral ad-ministration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome[J]. mSphere, 2018,3(5):e00460-e00418.
doi: 10.1128/mSphere.00460-18 pmid: 30333180
[67] Niller HH, Masa R, Venkei A, et al. Pathogenic me-chanisms of intracellular bacteria[J]. Curr Opin Infect Dis, 2017,30(3):309-315.
doi: 10.1097/QCO.0000000000000363 pmid: 28134679
[68] Santos VR, Lima JA, Gonçalves TE, et al. Receptor activator of nuclear factor-kappa B ligand/osteopro-tegerin ratio in sites of chronic periodontitis of subjects with poorly and well-controlled type 2 diabetes[J]. J Periodontol, 2010,81(10):1455-1465.
doi: 10.1902/jop.2010.100125 pmid: 20476881
[69] Engebretson SP, Hey-Hadavi J, Ehrhardt FJ, et al. Gingival crevicular fluid levels of interleukin-1β and glycemic control in patients with chronic perio-dontitis and type 2 diabetes[J]. J Periodontol, 2004,75(9):1203-1208.
pmid: 15515334
[70] Xiao E, Mattos M, Vieira GHA, et al. Diabetes enhances IL-17 expression and alters the oral micro-biome to increase its pathogenicity[J]. Cell Host Microbe, 2017, 22(1): 120- 128. e4.
doi: 10.1016/j.chom.2017.06.014 pmid: 28704648
[71] Mealey BL. Periodontal disease and diabetes. A two-way street[J]. J Am Dent Assoc, 2006,137(Suppl):26S-31S.
doi: 10.14219/jada.archive.2006.0404
[72] Moore PA, Guggenheimer J, Etzel KR, et al. Type 1 diabetes mellitus, xerostomia, and salivary flow rates[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001,92(3):281-291.
pmid: 11552145
[73] Conrad R, Ji Y, Noll M, et al. Response of the me-thanogenic microbial communities in Amazonian oxbow lake sediments to desiccation stress[J]. Environ Microbiol, 2014,16(6):1682-1694.
doi: 10.1111/1462-2920.12267
[74] Ganesan SM, Joshi V, Fellows M, et al. A tale of two risks: smoking, diabetes and the subgingival micro-biome[J]. ISME J, 2017,11(9):2075-2089.
doi: 10.1038/ismej.2017.73 pmid: 28534880
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 杨倩娟,宋致馨,方世殊,顾泽旭,金作林,刘倩. 基于唾液代谢组学的口腔疾病研究新进展[J]. 国际口腔医学杂志, 2023, 50(3): 321-328.
[3] 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216.
[4] 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295.
[5] 陈静,葛子瑜,俞婷婷,章燕珍. 帕金森病与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 218-224.
[6] 胡垚,程磊,郭强,任彪. 白假丝酵母与口腔常见细菌相互作用的进展研究[J]. 国际口腔医学杂志, 2019, 46(6): 663-669.
[7] 姜雪,黄淡远,廖文. 磷酸钛氧钾激光应用于口腔疾病治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 456-462.
[8] 李伟,周京琳. 口腔代谢组学研究[J]. 国际口腔医学杂志, 2019, 46(3): 249-252.
[9] 赵鹏飞,王琪. 伴糖尿病患者种植骨缺损的病因及治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 244-248.
[10] 吴东蕾,刘静. 氧化应激损伤与口腔疾病相关性的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 62-67.
[11] 陶艳,周瑜,陈谦明. 维生素B12缺乏口腔表征的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 78-83.
[12] 李维,农晓琳. 糖尿病对唾液分泌和唾液腺的影响及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 579-583.
[13] 关淑元, 周媛, 周学东, 郑黎薇. 孕前口腔保健及遗传咨询[J]. 国际口腔医学杂志, 2018, 45(3): 324-330.
[14] 刘彩云, 陶怡然. 糖尿病与味觉损害的关系[J]. 国际口腔医学杂志, 2018, 45(3): 358-361.
[15] 熊毅, 宫苹, 伍颖颖. 成骨细胞条件性FoxOem>1基因敲除糖尿病小鼠模型的建立[J]. 国际口腔医学杂志, 2018, 45(2): 170-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .