国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (2): 244-248.doi: 10.7518/gjkq.2019014
• 综述 • 上一篇
摘要:
糖尿病患者因其全身及口腔局部原因互相影响促进,常导致牙种植前后颌骨缺损的产生,引起骨整合的失败,为种植治疗带来了挑战。目前,针对此类骨缺损的治疗仍然是临床难点,但已有越来越多的研究关注糖尿病患者种植骨缺损的发生机制及修复方法,随着病因机制的深入研究,综合治疗方案也在逐渐完善,本文就全身和局部两方面对伴糖尿病患者种植骨缺损的病因及治疗研究进展展开综述,为临床治疗提供新的理念和思路。
中图分类号:
[1] |
Chrcanovic BR, Albrektsson T, Wennerberg A . Dia-betes and oral implant failure: a systematic review[J]. J Dent Res, 2014,93(9):859-867.
doi: 10.1177/0022034514538820 |
[2] |
Al-Sowygh ZH, Ghani SMA, Sergis K , et al. Peri-implant conditions and levels of advanced glycation end products among patients with different glycemic control[J]. Clin Implant Dent Relat Res, 2018,20(3):345-351.
doi: 10.1038/sj.bdj.2018.248 |
[3] |
Yamamoto M, Sugimoto T . Advanced glycation end products, diabetes, and bone strength[J]. Curr Osteo-poros Rep, 2016,14(6):320-326.
doi: 10.1007/s11914-016-0332-1 pmid: 27704396 |
[4] |
Meng HZ, Zhang WL, Liu F , et al. Advanced glycation end products affect osteoblast proliferation and func-tion by modulating autophagy via the receptor of advanced glycation end products/raf protein/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (RAGE/Raf/MEK/ERK) pathway[J]. J Biol Chem, 2015,290(47):28189-28199.
doi: 10.1074/jbc.M115.669499 |
[5] |
Yang X, Gandhi C, Rahman MM , et al. Age-related effects of advanced glycation end products (ages) in bone matrix on osteoclastic resorption[J]. Calcif Tissue Int, 2015,97(6):592-601.
doi: 10.1007/s00223-015-0042-1 pmid: 26204848 |
[6] | Franceschi C, Bonafè M, Valensin S , et al. Inflamm-aging. An evolutionary perspective on immunosenes-cence[J]. Ann N Y Acad Sci, 2000,908:244-254. |
[7] |
Kour S, Rath PC . Long noncoding RNAs in aging and age-related diseases[J]. Ageing Res Rev, 2016,26:1-21.
doi: 10.1016/j.arr.2015.12.001 pmid: 26655093 |
[8] |
Ko KI, Coimbra LS, Tian C , et al. Diabetes reduces mesenchymal stem cells in fracture healing through a TNFα-mediated mechanism[J]. Diabetologia, 2015,58(3):633-642.
doi: 10.1007/s00125-014-3470-y pmid: 4346353 |
[9] |
Algate K, Haynes DR, Bartold PM , et al. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes[J]. J Periodont Res, 2016,51(5):549-566.
doi: 10.1111/jre.12339 pmid: 26667183 |
[10] |
Bhatti JS, Kumar S, Vijayan M , et al. Therapeutic strategies for mitochondrial dysfunction and oxidative stress in age-related metabolic disorders[J]. Prog Mol Biol Transl Sci, 2017,146:13-46.
doi: 10.1016/B978-0-12-385071-3.00012-5 pmid: 21075325 |
[11] |
Patil VS, Patil VP, Gokhale N , et al. Chronic perio-dontitis in type 2 diabetes mellitus: oxidative stress as a common factor in periodontal tissue injury[J]. J Clin Diagn Res, 2016, 10(4): BC12-BC16.
doi: 10.7860/JCDR/2016/17350.7542 pmid: 4866088 |
[12] |
Kose O, Arabaci T, Kara A , et al. Effects of mela-tonin on oxidative stress index and alveolar bone loss in diabetic rats with periodontitis[J]. J Periodontol, 2016,87(5):e82-e90.
doi: 10.1902/jop.2016.150541 pmid: 26832833 |
[13] |
Reddy MA, Zhang EL, Natarajan R . Epigenetic me-chanisms in diabetic complications and metabolic memory[J]. Diabetologia, 2015,58(3):443-455.
doi: 10.1007/s00125-014-3462-y pmid: 25481708 |
[14] |
Gallagher KA, Joshi A, Carson WF , et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes[J]. Diabetes, 2015,64(4):1420-1430.
doi: 10.2337/db14-0872 pmid: 4375075 |
[15] |
Mori K, Kitazawa R, Kondo T , et al. Diabetic osteo-penia by decreased β-catenin signaling is partly in-duced by epigenetic derepression of sFRP-4 gene[J]. PLoS One, 2014,9(7):e102797.
doi: 10.1371/journal.pone.0102797 |
[16] |
Babaev EA, Balmasova IP, Mkrtumyan AM , et al. Metagenomic analysis of gingival sulcus microbiota and pathogenesis of periodontitis associated with type 2 diabetes mellitus[J]. Bull Exp Biol Med, 2017,163(6):718-721.
doi: 10.1007/s10517-017-3888-6 |
[17] |
Preshaw PM, Alba AL, Herrera D , et al. Periodontitis and diabetes: a two-way relationship[J]. Diabeto-logia, 2012,55(1):21-31.
doi: 10.1007/s00125-011-2342-y pmid: 3228943 |
[18] |
Sonnenschein SK, Meyle J . Local inflammatory reactions in patients with diabetes and periodontitis[J]. Periodontol 2000, 2015,69(1):221-254.
doi: 10.1111/prd.12089 pmid: 26252411 |
[19] |
Pradeep AR, Agarwal E, Bajaj P , et al. 4-Hydroxy-2-nonenal, an oxidative stress marker in crevicular fluid and serum in type 2 diabetes with chronic periodon-titis[J]. Contemp Clin Dent, 2013,4(3):281-285.
doi: 10.4103/0976-237X.118342 pmid: 24124291 |
[20] |
Monje A, Catena A, Borgnakke WS . Association be- tween diabetes mellitus/hyperglycaemia and peri-im-plant diseases: systematic review and meta-analysis[J]. J Clin Periodontol, 2017,44(6):636-648.
doi: 10.1111/jcpe.12724 pmid: 28346753 |
[21] |
Javed F, Romanos GE . Impact of diabetes mellitus and glycemic control on the osseointegration of den-tal implants: a systematic literature review[J]. J Pe-riodontol, 2009,80(11):1719-1730.
doi: 10.1902/jop.2009.090283 pmid: 19905942 |
[22] |
Serrão CR, Bastos MF, Cruz DF , et al. Role of met-formin in reversing the negative impact of hyper-glycemia on bone healing around implants inserted in type 2 diabetic rats[J]. Int J Oral Maxillofac Im-plants, 2017,32(3):547-554.
doi: 10.11607/jomi.5754 pmid: 28494038 |
[23] |
Aguilar-Salvatierra A, Calvo-Guirado JL, González-Jaranay M , et al. Peri-implant evaluation of im-mediately loaded implants placed in esthetic zone in patients with diabetes mellitus type 2: a two-year study[J]. Clin Oral Implants Res, 2016,27(2):156-161.
doi: 10.1111/clr.12552 pmid: 25623884 |
[24] |
Wu YY, Yu T, Yang XY , et al. Vitamin D3 and insulin combined treatment promotes titanium implant os-seointegration in diabetes mellitus rats[J]. Bone, 2013,52(1):1-8.
doi: 10.1016/j.bone.2012.09.005 pmid: 22985888 |
[25] |
Morris HF, Ochi S, Winkler S . Implant survival in patients with type 2 diabetes: placement to 36 months[J]. Ann Periodontol, 2000,5(1):157-165.
doi: 10.1902/annals.2000.5.1.157 pmid: 11885176 |
[26] |
Schwartz-Arad D, Levin L, Sigal L . Surgical success of intraoral autogenous block onlay bone grafting for alveolar ridge augmentation[J]. Implant Dent, 2005,14(2):131-138.
doi: 10.1097/01.id.0000165031.33190.0d pmid: 15968184 |
[27] |
Tawil G, Younan R, Azar P , et al. Conventional and advanced implant treatment in the type Ⅱ diabetic patient: surgical protocol and long-term clinical re-sults[J]. Int J Oral Maxillofac Implants, 2008,23(4):744-752.
doi: 10.1016/j.ijom.2008.04.009 pmid: 18807573 |
[28] |
Erdogan ö, Uçar Y, Tatlı U , et al. A clinical prospec-tive study on alveolar bone augmentation and dental implant success in patients with type 2 diabetes[J]. Clin Oral Implants Res, 2015,26(11):1267-1275.
doi: 10.1111/clr.12450 pmid: 25041273 |
[29] |
Yu M, Zhou W, Song YL , et al. Development of mesenchymal stem cell-implant complexes by cul-tured cells sheet enhances osseointegration in type 2 diabetic rat model[J]. Bone, 2011,49(3):387-394.
doi: 10.1016/j.bone.2011.05.025 pmid: 21672646 |
[30] |
Schlegel KA, Prechtl C, Möst T , et al. Osseointe-gration of SLActive implants in diabetic pigs[J]. Clin Oral Implants Res, 2013,24(2):128-134.
doi: 10.1111/j.1600-0501.2011.02380.x pmid: 22111960 |
[31] |
Ma XY, Feng YF, Ma ZS , et al. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces[J]. Biomaterials, 2014,35(26):7259-7270.
doi: 10.1016/j.biomaterials.2014.05.028 pmid: 24912815 |
[32] |
Li X, Ma XY, Feng YF , et al. Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions[J]. Biomaterials, 2015,36:44-54.
doi: 10.1016/j.biomaterials.2014.09.012 pmid: 25308520 |
[33] |
Al Amri MD, Kellesarian SV, Al-Kheraif AA , et al. Effect of oral hygiene maintenance on HbA1c levels and peri-implant parameters around immediately-loaded dental implants placed in type-2 diabetic patients: 2 years follow-up[J]. Clin Oral Implants Res, 2016,27(11):1439-1443.
doi: 10.1111/clr.12758 |
[34] |
Figuero E, Graziani F, Sanz I , et al. Management of peri-implant mucositis and peri-implantitis[J]. Perio-dontol 2000, 2014,66(1):255-273.
doi: 10.1111/prd.12049 pmid: 25123773 |
[35] |
Wang Q, Li H, Xiao Y , et al. Locally controlled de-livery of TNFα antibody from a novel glucose-sen-sitive scaffold enhances alveolar bone healing in dia- betic conditions[J]. J Control Release, 2015,206:232-242.
doi: 10.1016/j.jconrel.2015.03.019 pmid: 25796348 |
[1] | 汤春波. 无牙颌患者种植治疗修复空间与修复方式的选择策略[J]. 国际口腔医学杂志, 2024, 51(1): 1-9. |
[2] | 韩冲,何东宁,余飞燕,吴东潮. 口腔种植术后疼痛机制及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 99-106. |
[3] | 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673. |
[4] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[5] | 廖洪林,方仲瀚,张艳艳,刘飞,沈颉飞. 牙种植术后三叉神经创伤性神经病理性疼痛的诊断与防治[J]. 国际口腔医学杂志, 2023, 50(6): 729-738. |
[6] | 龚佳明,赵瑞敏,潘宏伟,郎鑫,余占海,李健学. 动态导航与静态导航对种植体准确性的Meta分析[J]. 国际口腔医学杂志, 2023, 50(5): 538-551. |
[7] | 刘云通,刘畅,高丽钞,罗瑜雪,曹钰彬,华成舸. 术后下牙槽神经功能障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 479-484. |
[8] | 朱可石,廖安琪,余优成. 机器学习在口腔种植学中的应用研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 491-498. |
[9] | 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358. |
[10] | 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158. |
[11] | 朱叶玲,王茜,孙天瞳,王丽娜,何小明,李加志. 实现牙列前移新型推簧装置的改良应用[J]. 国际口腔医学杂志, 2023, 50(1): 82-90. |
[12] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632. |
[13] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[14] | 龚佳明,赵瑞敏,李婉昕,苏琳涵,余占海,李健学. 根盾技术对即刻种植临床效果的影响:基于随机对照研究的Meta分析[J]. 国际口腔医学杂志, 2022, 49(5): 537-547. |
[15] | 雒琪玥,柳叶语,罗依麟,满毅. 以正中关系为中心、面部美学及修复为导向的数字化无牙颌种植修复1例[J]. 国际口腔医学杂志, 2022, 49(4): 426-431. |
|