国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 519-522.doi: 10.7518/gjkq.2017.05.005
李格格1, 潘佳慧1, 唐秋玲1, 刘歆婵2, 侯玉帛1, 于维先1
Li Gege1, Pan Jiahui1, Tang Qiuling1, Liu Xinchan2, Hou Yubo1, Yu Weixian1
摘要:
有关牙周炎病因的关键致病菌假说近年来引起学者们的关注,该假说认为牙龈卟啉单胞菌在牙周炎的发病过程中发挥着重要作用,是牙周炎的关键致病菌。牙龈素是牙龈卟啉单胞菌产生的重要致病因子之一,它可以协助牙龈卟啉单胞菌逃逸巨噬细胞、中性粒细胞及补体系统的杀伤作用。本文就牙龈素促进牙龈卟啉单胞菌免疫逃逸的机制相关研究进展作一综述,对这一机制的深入了解有助于进一步理解牙龈素的致病机制,同时也可以为牙周炎的防治探索新的途径。
中图分类号:
[1] Hajishengallis G, Darveau RP, Curtis MA. The keys-tone-pathogen hypothesis[J]. Nat Rev Microbiol, 2012, 10(10):717-725. [2] Hajishengallis G, Lamont RJ. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts[J]. Trends Microbiol, 2016, 24(6):477-489. [3] Hajishengallis G. Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1):30-44. [4] Benedyk M, Mydel PM, Delaleu N, et al. Gingipains: critical factors in the development of aspiration pneumonia caused by Porphyromonas gingivalis [J]. J Innate Immun, 2016, 8(2):185-198. [5] Potempa J, Pike R, Travis J. Titration and mapping of the active site of cysteine proteinases from Por-phyromonas gingivalis (gingipains) using peptidyl chloromethanes[J]. Biol Chem, 1997, 378(3/4):223- 230. [6] Potempa J, Pike R, Travis J. The multiple forms of trypsin-like activity present in various strains of Por-phyromonas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain[J]. Infect Im-mun, 1995, 63(4):1176-1182. [7] Wang M, Krauss JL, Domon H, et al. Microbial hijacking of complement-toll-like receptor crosstalk [J]. Sci Signal, 2010, 3(109):ra11. [8] Hajishengallis G, Abe T, Maekawa T, et al. Role of complement in host-microbe homeostasis of the pe-riodontium[J]. Semin Immunol, 2013, 25(1):65-72. [9] Hussain QA, McKay IJ, Gonzales-Marin C, et al. Detection of adrenomedullin and nitric oxide in dif-ferent forms of periodontal disease[J]. J Periodont Res, 2016, 51(1):16-25. [10] Liang S, Krauss JL, Domon H, et al. The C5a rece-ptor impairs IL-12-dependent clearance of Porphyro-monas gingivalis and is required for induction of periodontal bone loss[J]. J Immunol, 2011, 186(2): 869-877. [11] Hawlisch H, Belkaid Y, Baelder R, et al. C5a nega-tively regulates toll-like receptor 4-induced immune responses[J]. Immunity, 2005, 22(4):415-426. [12] Wu Z, Liu Y, Dong W, et al. CD14 in the TLRs signaling pathway is associated with the resistance to E. coli F18 in Chinese domestic weaned piglets[J]. Sci Rep, 2016, 6:24611. [13] Holden JA, Attard TJ, Laughton KM, et al. Por-phyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines[J]. Infect Immun, 2014, 82(10):4190-4203. [14] Lam RS, O’Brien-Simpson NM, Holden JA, et al. Unprimed, M1 and M2 macrophages differentially interact with Porphyromonas gingivalis [J]. PLoS ONE, 2016, 11(7):e0158629. [15] Wilensky A, Tzach-Nahman R, Potempa J, et al. Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection[J]. J Innate Immun, 2015, 7(2):127-135. [16] Abe T, Hosur KB, Hajishengallis E, et al. Local com-plement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor(CD88) antagonist [J]. J Immunol, 2012, 189(11):5442-5448. [17] Kataoka S, Baba A, Suda Y, et al. A novel, potent dual inhibitor of Arg-gingipains and Lys-gingipain as a promising agent for periodontal disease therapy [J]. FASEB J, 2014, 28(8):3564-3578. [18] Reynolds EC, O’Brien-Simpson N, Rowe T, et al. Prospects for treatment of Porphyromonas gingiva-lis -mediated disease—immune-based therapy[J]. J Oral Microbiol, 2015, 7:29125. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[3] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[4] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[5] | 徐智博,孟秀萍. 粪肠球菌逃逸宿主免疫防御机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 613-617. |
[6] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[7] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[8] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[9] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[10] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[11] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[12] | 王冠儒,冯强. 牙龈卟啉单胞菌在阿尔兹海默症发生中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 397-403. |
[13] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[14] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[15] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
|