国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 519-522.doi: 10.7518/gjkq.2017.05.005

• 牙周专栏 • 上一篇    下一篇

牙龈素促进牙龈卟啉单胞菌免疫逃逸的机制

李格格1, 潘佳慧1, 唐秋玲1, 刘歆婵2, 侯玉帛1, 于维先1   

  1. 1.吉林大学口腔医院牙周病科 吉林省牙发育及颌骨重塑与再生重点实验室 长春 130021;
    2.吉林大学口腔医院种植科 吉林省牙发育及颌骨重塑与再生重点实验室 长春 130021
  • 收稿日期:2016-11-19 修回日期:2017-05-16 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 于维先,教授,博士,Email:yu-wei-xian@163.com
  • 作者简介:李格格,硕士,Email:1099075958@qq.com
  • 基金资助:

    吉林省科技厅自然科学基金项目(20150101076JC); 吉林省卫生技术创新项目(2016J073); 国家自然科学基金面上项目(81- 570983)

Immune evasion strategies of Porphyromonas gingivalis via gingipains

Li Gege1, Pan Jiahui1, Tang Qiuling1, Liu Xinchan2, Hou Yubo1, Yu Weixian1   

  1. 1. Dept. of Periodontology, Hospital of Stomatology, Jilin University; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China;
    2. Dept. of Dental Implantology, Hospital of Stomatology, Jilin University;Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2016-11-19 Revised:2017-05-16 Online:2017-09-01 Published:2017-09-01
  • Supported by:

    ; This study was supported by Funding from the Jilin Provincial Science and Technology Department(20150101076JC), Jilin Provincial Technology Innovation Projects(2016J073) and National Natural Science Foundation of China(81570983).

摘要:

有关牙周炎病因的关键致病菌假说近年来引起学者们的关注,该假说认为牙龈卟啉单胞菌在牙周炎的发病过程中发挥着重要作用,是牙周炎的关键致病菌。牙龈素是牙龈卟啉单胞菌产生的重要致病因子之一,它可以协助牙龈卟啉单胞菌逃逸巨噬细胞、中性粒细胞及补体系统的杀伤作用。本文就牙龈素促进牙龈卟啉单胞菌免疫逃逸的机制相关研究进展作一综述,对这一机制的深入了解有助于进一步理解牙龈素的致病机制,同时也可以为牙周炎的防治探索新的途径。

关键词: 牙周炎, 牙龈卟啉单胞菌, 牙龈素, 免疫逃逸

Abstract:

The keystone-pathogen hypothesis about the etiology of periodontitis has attracted the attention of scholars in recent years. In this view, Porphyromonas gingivalis is considered as a keystone pathogen in the pathogenic progression of periodontitis. Gingipains generated by Porphyromonas gingivalis are key virulence factors, which could assist Porphyromonas gingivalis to escape the killing effects of macrophages, neutrophils and complement system. The aim of this literature review is to discuss the immune evasion strategies ofPorphyromonas gingivalis via gingipains. The exposition of this important mechanism may provide a further understanding of the pathogenic mechanism of gingipains, and lay a foundation for exploring new methods for the prevention and treatment of periodontitis.

Key words: periodontitis, Prophyromonas gingivalis, gingipain, immune evasion

中图分类号: 

  • R780.2
[1] Hajishengallis G, Darveau RP, Curtis MA. The keys-tone-pathogen hypothesis[J]. Nat Rev Microbiol, 2012, 10(10):717-725.
[2] Hajishengallis G, Lamont RJ. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts[J]. Trends Microbiol, 2016, 24(6):477-489.
[3] Hajishengallis G. Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1):30-44.
[4] Benedyk M, Mydel PM, Delaleu N, et al. Gingipains: critical factors in the development of aspiration pneumonia caused by Porphyromonas gingivalis [J]. J Innate Immun, 2016, 8(2):185-198.
[5] Potempa J, Pike R, Travis J. Titration and mapping of the active site of cysteine proteinases from Por-phyromonas gingivalis (gingipains) using peptidyl chloromethanes[J]. Biol Chem, 1997, 378(3/4):223- 230.
[6] Potempa J, Pike R, Travis J. The multiple forms of trypsin-like activity present in various strains of Por-phyromonas gingivalis are due to the presence of either Arg-gingipain or Lys-gingipain[J]. Infect Im-mun, 1995, 63(4):1176-1182.
[7] Wang M, Krauss JL, Domon H, et al. Microbial hijacking of complement-toll-like receptor crosstalk [J]. Sci Signal, 2010, 3(109):ra11.
[8] Hajishengallis G, Abe T, Maekawa T, et al. Role of complement in host-microbe homeostasis of the pe-riodontium[J]. Semin Immunol, 2013, 25(1):65-72.
[9] Hussain QA, McKay IJ, Gonzales-Marin C, et al. Detection of adrenomedullin and nitric oxide in dif-ferent forms of periodontal disease[J]. J Periodont Res, 2016, 51(1):16-25.
[10] Liang S, Krauss JL, Domon H, et al. The C5a rece-ptor impairs IL-12-dependent clearance of Porphyro-monas gingivalis and is required for induction of periodontal bone loss[J]. J Immunol, 2011, 186(2): 869-877.
[11] Hawlisch H, Belkaid Y, Baelder R, et al. C5a nega-tively regulates toll-like receptor 4-induced immune responses[J]. Immunity, 2005, 22(4):415-426.
[12] Wu Z, Liu Y, Dong W, et al. CD14 in the TLRs signaling pathway is associated with the resistance to E. coli F18 in Chinese domestic weaned piglets[J]. Sci Rep, 2016, 6:24611.
[13] Holden JA, Attard TJ, Laughton KM, et al. Por-phyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines[J]. Infect Immun, 2014, 82(10):4190-4203.
[14] Lam RS, O’Brien-Simpson NM, Holden JA, et al. Unprimed, M1 and M2 macrophages differentially interact with Porphyromonas gingivalis [J]. PLoS ONE, 2016, 11(7):e0158629.
[15] Wilensky A, Tzach-Nahman R, Potempa J, et al. Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection[J]. J Innate Immun, 2015, 7(2):127-135.
[16] Abe T, Hosur KB, Hajishengallis E, et al. Local com-plement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor(CD88) antagonist [J]. J Immunol, 2012, 189(11):5442-5448.
[17] Kataoka S, Baba A, Suda Y, et al. A novel, potent dual inhibitor of Arg-gingipains and Lys-gingipain as a promising agent for periodontal disease therapy [J]. FASEB J, 2014, 28(8):3564-3578.
[18] Reynolds EC, O’Brien-Simpson N, Rowe T, et al. Prospects for treatment of Porphyromonas gingiva-lis -mediated disease—immune-based therapy[J]. J Oral Microbiol, 2015, 7:29125.
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[5] 徐智博,孟秀萍. 粪肠球菌逃逸宿主免疫防御机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 613-617.
[6] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[7] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[8] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[9] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[10] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[11] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[12] 王冠儒,冯强. 牙龈卟啉单胞菌在阿尔兹海默症发生中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 397-403.
[13] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[14] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
[15] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .