国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (4): 478-483.doi: 10.7518/gjkq.2020071
赵玉洁1,管晓燕1,2,李小兰3,陈琦君1,2,王倩3,刘建国1,3()
Zhao Yujie1,Guan Xiaoyan1,2,Li Xiaolan3,Chen Qijun1,2,Wang Qian3,Liu Jianguo1,3()
摘要:
正畸牙在正畸力的作用下发生移动。其中,颌骨的可塑性、牙骨质的抗压性及牙周膜内环境的稳定性是正畸牙周组织改建与牙齿移动的生物基础。施加于牙齿的正畸力改变的牙周局部微环境促进了巨噬细胞向M1型极化,并分泌炎性因子促进牙槽骨吸收和随后的正畸牙移动(orthodontic tooth movement,OTM),而M2型巨噬细胞则发挥抗炎作用,促进牙周组织修复。本文就M1、M2型巨噬细胞在OTM过程中的作用以及正畸治疗中影响巨噬细胞极化的因素进行综述,以期为未来巨噬细胞在正畸领域中的研究和加速OTM提供理论基础。
中图分类号:
[1] |
Yang GX, Chen XY, Yan Z, et al. CD11b promotes the differentiation of osteoclasts induced by RANKL through the spleen tyrosine kinase signalling pathway[J]. J Cell Mol Med, 2017,21(12):3445-3452.
doi: 10.1111/jcmm.13254 pmid: 28661042 |
[2] | Wang YH, Smith W, Hao DJ, et al. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds[J]. Int Immunophar-macol, 2019,70:459-466. |
[3] |
Wasnik S, Rundle CH, Baylink DJ, et al. 1,25-Dihy-droxyvitamin D suppresses M1 macrophages and promotes M2 differentiation at bone injury sites[J]. JCI Insight, 2018,3(17):98773.
doi: 10.1172/jci.insight.98773 pmid: 30185660 |
[4] |
Huang CB, Alimova Y, Ebersole JL. Macrophage polarization in response to oral commensals and pathogens[J]. Pathog Dis, 2016,74(3): ftw011.
doi: 10.1093/femspd/ftw011 pmid: 26884502 |
[5] |
Juban G, Chazaud B. Metabolic regulation of macro-phages during tissue repair: insights from skeletal muscle regeneration[J]. FEBS Lett, 2017,591(19):3007-3021.
doi: 10.1002/1873-3468.12703 pmid: 28555751 |
[6] | 阮静瑶, 陈必成, 张喜乐, 等. 巨噬细胞M1/M2极化的信号通路研究进展[J]. 免疫学杂志, 2015,31(10):911-917. |
Ruan JY, Chen BC, Zhang XL, et al. Progress in signaling pathways of macrophage M1/2 polariza-tion[J]. Immunol J, 2015,31(10):911-917. | |
[7] |
Lurier EB, Dalton D, Dampier W, et al. Transcrip-tome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing[J]. Immunobiology, 2017,222(7):847-856.
doi: 10.1016/j.imbio.2017.02.006 pmid: 28318799 |
[8] |
Annamalai RT, Turner PA, Carson WF 4th, et al. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release[J]. Biomaterials, 2018,161:216-227.
doi: 10.1016/j.biomaterials.2018.01.040 pmid: 29421557 |
[9] |
Nuñez SY, Ziblat A, Secchiari F, et al. Human M2 macrophages limit NK cell effector functions through secretion of TGF-β and engagement of CD85j[J]. J Immunol, 2018,200(3):1008-1015.
doi: 10.4049/jimmunol.1700737 pmid: 29282306 |
[10] | Hu YL, Zhang HW, Lu Y, et al. Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization[J]. Basic Res Car-diol, 2011,106(6):1311-1328. |
[11] |
Li Y, Zheng W, Liu JS, et al. Expression of osteo-clastogenesis inducers in a tissue model of perio-dontal ligament under compression[J]. J Dent Res, 2011,90(1):115-120.
doi: 10.1177/0022034510385237 pmid: 20940359 |
[12] | Tosi MF. Innate immune responses to infection[J]. J Allergy Clin Immunol, 2005,116(2):241-249. |
[13] |
Koyama Y, Mitsui N, Suzuki N, et al. Effect of com-pressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells[J]. Arch Oral Biol, 2008,53(5):488-496.
pmid: 18241837 |
[14] | Zhong JX, Chen JN, Weinkamer R, et al. In vivo effects of different orthodontic loading on root re-sorption and correlation with mechanobiological stimulus in periodontal ligament[J]. J R Soc Inter-face, 2019,16(154):20190108. |
[15] |
Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets[J]. Nat Rev Immunol, 2011,11(11):723-737.
pmid: 21997792 |
[16] |
He D, Kou X, Yang R, et al. M1-like macrophage polarization promotes orthodontic tooth movement[J]. J Dent Res, 2015,94(9):1286-1294.
doi: 10.1177/0022034515589714 pmid: 26124217 |
[17] |
Konermann A, Beyer M, Deschner J, et al. Human periodontal ligament cells facilitate leukocyte recruit-ment and are influenced in their immunomodulatory function by Th17 cytokine release[J]. Cell Immunol, 2012,272(2):137-143.
doi: 10.1016/j.cellimm.2011.10.020 pmid: 22119482 |
[18] |
Wang Y, Zhang HW, Sun W, et al. Macrophages mediate corticotomy-accelerated orthodontic tooth movement[J]. Sci Rep, 2018,8(1):16788.
pmid: 30429494 |
[19] |
Frith JC, Mönkkönen J, Auriola S, et al. The molecular mechanism of action of the antiresorptive and antiin-flammatory drug clodronate: evidence for the forma-tion in vivo of a metabolite that inhibits bone resorp-tion and causes osteoclast and macrophage apoptosis[J]. Arthritis Rheum, 2001,44(9):2201-2210.
doi: 10.1002/1529-0131(200109)44:9<2201::aid-art374>3.0.co;2-e pmid: 11592386 |
[20] | Feller L, Khammissa RA, Thomadakis G, et al. Apical external root resorption and repair in orthodontic tooth movement: biological events[J]. Biomed Res Int, 2016,2016:4864195. |
[21] |
Kamat M, Puranik R, Vanaki S, et al. An insight into the regulatory mechanisms of cells involved in resor-ption of dental hard tissues[J]. J Oral Maxillofac Pathol, 2013,17(2):228-233.
doi: 10.4103/0973-029X.119736 pmid: 24250084 |
[22] |
Iglesias-Linares A, Hartsfield JK Jr. Cellular and molecular pathways leading to external root resor-ption[J]. J Dent Res, 2017,96(2):145-152.
pmid: 27811065 |
[23] |
He D, Kou X, Luo Q, et al. Enhanced M1/M2 ma-crophage ratio promotes orthodontic root resorption[J]. J Dent Res, 2015,94(1):129-139.
doi: 10.1177/0022034514553817 pmid: 25344334 |
[24] |
Makrygiannakis MA, Kaklamanos EG, Athanasiou AE. Effects of systemic medication on root resor-ption associated with orthodontic tooth movement: a systematic review of animal studies[J]. Eur J Orthod, 2019,41(4):346-359.
doi: 10.1093/ejo/cjy048 pmid: 29992228 |
[25] |
Abdelmagid SM, Barbe MF, Safadi FF. Role of in-flammation in the aging bones[J]. Life Sci, 2015,123:25-34.
doi: 10.1016/j.lfs.2014.11.011 pmid: 25510309 |
[26] |
Konermann A, Stabenow D, Knolle PA, et al. Re-gulatory role of periodontal ligament fibroblasts for innate immune cell function and differentiatio[J]. Innate Immun, 2012,18(5):745-752.
pmid: 22436844 |
[27] |
Wolf M, Lossdörfer S, Craveiro R, et al. High-mobi-lity group box protein-1 released by human-perio-dontal ligament cells modulates macrophage migra-tion and activity in vitro[J]. Innate Immun, 2014,20(7):688-696.
pmid: 24107514 |
[28] |
Meikle MC. The tissue, cellular, and molecular re-gulation of orthodontic tooth movement: 100 years after Carl Sandstedt[J]. Eur J Orthod, 2006,28(3):221-240.
doi: 10.1093/ejo/cjl001 pmid: 16687469 |
[29] |
Gentek R, Molawi K, Sieweke MH. Tissue macro-phage identity and self-renewal[J]. Immunol Rev, 2014,262(1):56-73.
doi: 10.1111/imr.12224 pmid: 25319327 |
[30] |
Zeng M, Kou X, Yang R, et al. Orthodontic force induces systemic inflammatory monocyte responses[J]. J Dent Res, 2015,94(9):1295-1302.
doi: 10.1177/0022034515592868 pmid: 26130260 |
[31] |
Yamaguchi T, Movila A, Kataoka S, et al. Proinfla-mmatory M1 macrophages inhibit RANKL-induced osteoclastogenesis[J]. Infect Immun, 2016,84(10):2802-2812.
doi: 10.1128/IAI.00461-16 pmid: 27456834 |
[32] |
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing[J]. Biomaterials, 2019,196:80-89.
doi: 10.1016/j.biomaterials.2017.12.025 pmid: 29329642 |
[33] |
Schlundt C, El Khassawna T, Serra A, et al. Macro-phages in bone fracture healing: their essential role in endochondral ossification[J]. Bone, 2018,106:78-89.
doi: 10.1016/j.bone.2015.10.019 pmid: 26529389 |
[34] |
Zhang R, Liang Y, Wei SX. M2 macrophages are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury: a retrospective cohort study[J]. J Orthop Surg Res, 2018,13(1):213.
doi: 10.1186/s13018-018-0926-7 pmid: 30157885 |
[35] |
Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone[J]. J Bone Miner Res, 2015,30(12):2140-2149.
doi: 10.1002/jbmr.2735 pmid: 26531055 |
[36] |
Sandberg OH, Tätting L, Bernhardsson ME, et al. Temporal role of macrophages in cancellous bone healing[J]. Bone, 2017,101:129-133.
doi: 10.1016/j.bone.2017.04.004 pmid: 28414141 |
[37] |
Loi F, Córdova LA, Zhang R, et al. The effects of immunomodulation by macrophage subsets on osteo-genesis in vitro[J]. Stem Cell Res Ther, 2016,7:15.
pmid: 26801095 |
[1] | 王启秋,支清惠. 釉质白垩斑治疗方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 717-723. |
[2] | 周梦琪,陈学鹏,傅柏平. 正畸治疗中牙槽骨骨开窗骨开裂的预防和应对策略[J]. 国际口腔医学杂志, 2021, 48(5): 600-608. |
[3] | 王宁祥,刘帅,林良缘,吴娟. 多发性特发性根颈部吸收的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 362-366. |
[4] | 周懿婕,宋光泰. 年轻恒牙挫入性损伤的处理策略[J]. 国际口腔医学杂志, 2021, 48(2): 135-140. |
[5] | 刘玲,龚仁国,董秀华,刘入梦. 正畸联合双颌手术治疗前牙区严重骨性开长期稳定性的Meta分析[J]. 国际口腔医学杂志, 2021, 48(2): 173-179. |
[6] | 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627-634. |
[7] | 刘晔,洪润丹,王志国,刘涵云,孟琛达,王茹,徐全臣. 人单核细胞和外周血单个核细胞衍生的巨噬细胞极化特性的比较[J]. 国际口腔医学杂志, 2020, 47(3): 286-292. |
[8] | 陈艺尹,刘俊圻,李承浩. 牙槽突裂的裂隙特点及正畸治疗对唇腭裂患者牙槽突植骨术的影响[J]. 国际口腔医学杂志, 2020, 47(3): 345-350. |
[9] | 李寒月,夏露露,华先明. 牙周加速成骨正畸临床应用效果的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 206-211. |
[10] | 陈雪,李纾. 牙颈部外吸收[J]. 国际口腔医学杂志, 2019, 46(5): 516-521. |
[11] | 陈玉,姜欢,刘楠,陆晨萌,唐中元,韩茹钰,胡敏. 正畸治疗对骨性Ⅱ类错畸形患者上气道及周围结构变化的影响[J]. 国际口腔医学杂志, 2019, 46(5): 578-584. |
[12] | 高洁,马锐,葛振林. 热激活镍钛弓丝矫治效率的系统评价[J]. 国际口腔医学杂志, 2019, 46(4): 393-399. |
[13] | 何育薇,张智君,谢雨朗,梁英豪. 青少年正畸患者的心理状况研究[J]. 国际口腔医学杂志, 2019, 46(4): 413-419. |
[14] | 杨亚,陈鹏,戴红卫,张林. 大鼠正畸牙移动过程中转化生长因子-β/Smad信号通路相关蛋白质在Malassez上皮剩余细胞的表达变化[J]. 国际口腔医学杂志, 2019, 46(3): 270-276. |
[15] | 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319. |
|