国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 597-602.doi: 10.7518/gjkq.2018.05.017

• 综述 • 上一篇    下一篇

p53相关长链非编码RNA及其与口腔癌的关系

韩曈曈,陈乔尔(),朱友明   

  1. 安徽医科大学口腔医学院 合肥 230032
  • 收稿日期:2017-10-22 修回日期:2018-03-09 出版日期:2018-09-01 发布日期:2018-09-20
  • 通讯作者: 陈乔尔
  • 作者简介:韩曈曈,硕士,Email:1956133403@qq.com

Long non-coding RNA associated with p53 and the relationship with tumor

Tongtong Han,Qiaoer Chen(),Youming. Zhu   

  1. School of Stomatology, Anhui Medical University, Hefei 230032, China
  • Received:2017-10-22 Revised:2018-03-09 Online:2018-09-01 Published:2018-09-20
  • Contact: Qiaoer Chen

摘要:

p53基因是细胞生长的负性调节因子,正常情况下通过调控细胞的增殖和凋亡发挥抑癌作用,p53突变常导致肿瘤的发生。近年研究发现,长链非编码RNA(lncRNA)在多种肿瘤的发生发展中起到重要作用。本文将对p53相关的lncRNA在口腔癌中的研究进展进行论述,旨在为口腔癌患者的治疗提供新策略。

关键词: p53, 长链非编码RNA, 肿瘤, 口腔癌

Abstract:

p53 gene is a negative regulator of cell growth which can suppress the tumor through the regulation of cell proliferation and apoptosis under normal circumstances. The mutation of p53 often lead to the tumorigenesis. Recently, Long non-coding RNA (lncRNA) was identified as having a function role in the tumorigenesis and development of a variety of tumors. The review aimed to discuss the relationship of LncRNA which associated with p53 and oral cancer, and provide new strategies for patients with oral cancer.

Key words: p53, long non-coding RNA, tumors, oral cancer

中图分类号: 

  • R782
[1] 云霞, 达林泰, 田玮 , 等. 口腔鳞癌中β-catenin和p53蛋白的表达及其临床意义[J]. 内蒙古医学杂志, 2015,47(4):385-388, 514.
doi: 10.16096/J.cnki.nmgyxzz.2015.47.04.001
Yun X, Da LT, Tian W , et al. Expression of β-ca-tenin and p53 protein in oral squamous cell carcinoma and their clinical significance[J]. Inner Mongolia Med J, 2015,47(4):385-388, 514.
doi: 10.16096/J.cnki.nmgyxzz.2015.47.04.001
[2] Melo CA, Léveillé N, Rooijers K , et al. A p53-bound enhancer region controls a long intergenic noncoding RNA required for p53 stress response[J]. Oncogene, 2016,35(33):4399-4406.
doi: 10.1038/onc.2015.502
[3] 冯昭飞, 陈瑞扬 . p53基因突变与口腔肿瘤关系的研究进展[J]. 医学综述, 2008,14(14):2113-2115.
doi: 10.3969/j.issn.1006-2084.2008.14.011
Feng ZF, Chen RY . Study progress of the relationship between p53 gene mutation and oral tumor[J]. Med Recap, 2008,14(14):2113-2115.
doi: 10.3969/j.issn.1006-2084.2008.14.011
[4] Zhai N, Xia Y, Yin R , et al. A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer[J]. Onco Targets Ther, 2016,9:5713-5720.
doi: 10.2147/OTT
[5] 王莹, 辛彦 . Hippo通路和相关长链非编码RNA(LncRNA)与肿瘤关系的研究进展[J]. 现代肿瘤医学, 2015,23(21):3190-3193.
Wang Y, Xin Y . Hippo signal pathway and related LncRNA in tumors[J]. J Modern Oncol, 2015,23(21):3190-3193.
[6] Mercer TR, Dinger ME, Mattick JS , Long non-coding RNAs: insights into functions[J]. Nat Rev Genet, 2009,10(3):155-159.
doi: 10.1038/nrg2521
[7] Spizzo R, Almeida MI, Colombatti A , et al. Long non-coding RNAs and cancer: a new frontier of tran-slational research[J]. Oncogene, 2012,31(43):4577-4587.
doi: 10.1038/onc.2011.621 pmid: 22266873
[8] 徐伟华 . 长链非编码RNA URHC在肝癌细胞增殖与凋亡中的作用及机制研究[D]. 西安: 第四军医大学, 2014.
Xu WH . The function and mechanism of long non-coding RNA URHC on cell proliferation and apopto-sis in human hepatoma cells[D]. Xi’an: The Fourth Military Medical University, 2014.
[9] Gupta RA, Shah N, Wang KC , et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010,464(7291):1071-1076.
doi: 10.1038/nature08975 pmid: 3049919
[10] Hou P, Zhao Y, Li Z , et al. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis[J]. Cell Death Dis, 2014,5(6):e1287-e1287.
doi: 10.1038/cddis.2014.249
[11] 陈沁楠, 王朝霞 . 长链非编码 RNA GAS5在肿瘤研究中的进展[J]. 现代肿瘤医学, 2016,24(1):138-140.
doi: 10.3969/j.issn.1672-4992.2016.01.040
Chen QN, Wang ZX . Advancements of long non- coding RNA GAS5 in tumor research[J]. J Modern Oncol, 2016,24(1):138-140.
doi: 10.3969/j.issn.1672-4992.2016.01.040
[12] Grossi E, Sánchez Y, Huarte M , Expanding the p53 regulatory network: LncRNAs take up the challenge[J]. Biochim Biophys Acta, 2016,1859(1):200-208.
doi: 10.1016/j.bbagrm.2015.07.011 pmid: 26196323
[13] 魏晨晨, 王朝霞 . 长链非编码RNA H19在肿瘤研究中的进展[J]. 临床肿瘤学杂志, 2015,20(11):1041-1044.
Wei CC, Wang ZX . Progression of long non-coding RNA H19 in tumors[J]. Chin Clin Oncol, 2015,20(11):1041-1044.
[14] Adriaenssens E, Dumont L, Lottin S , et al. H19 over-expression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression[J]. Am J Pathol, 1998,153(5):1597-1607.
doi: 10.1016/S0002-9440(10)65748-3
[15] Yang F, Bi JW, Xue XC , et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells[J]. FEBS J, 2012,279(17):3159-3165.
doi: 10.1111/j.1742-4658.2012.08694.x
[16] Liu FT, Pan H, Xia GF , et al. Prognostic and clinico-pathological significance of long noncoding RNA H19 overexpression in human solid tumors: evidence from a meta-analysis[J]. Oncotarget, 2016,7(50):83177-83186.
[17] Zhang J, Zhang P, Wang L , et al. Long non-coding RNA HOTAIR in carcinogenesis and metastasis[J]. Acta Biochim Biophys Sin, 2014,46(1):1-5.
doi: 10.1093/abbs/gmt117
[18] Yu X, Li Z , Long non-coding RNA HOTAIR: a novel oncogene (review)[J]. Mol Med Rep, 2015,12(4):5611-5618.
doi: 10.3892/mmr.2015.4161 pmid: 26238267
[19] Liu YW, Sun M, Xia R , et al. LincHOTAIR epi-genetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer[J]. Cell Death Dis, 2015,6(7):e1802.
doi: 10.1038/cddis.2015.150
[20] Hu DM, Su CJ, Jiang M , et al. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3[J]. Biochem Biophys Res Commun, 2016,471(2):290-295.
doi: 10.1016/j.bbrc.2016.01.169
[21] Zhu JJ, Liu SS, Ye FQ , et al. Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells[J]. PloS One, 2015,10(10):e0139790.
doi: 10.1371/journal.pone.0139790
[22] Zhang J, Lin ZQ, Gao YL , et al. Downregulation of long noncoding RNA MEG3 is associated with poor prognosis and promoter hypermethylation in cervical cancer[J]. J Exp Clin Cancer Res, 2017,36(1):5.
doi: 10.1186/s13046-016-0472-2
[23] Chen RP, Huang ZL, Liu LX , et al. Involvement of endoplasmic reticulum stress and p53 in lncRNA MEG3-induced human hepatoma HepG2 cell apoptosis[J]. Oncol Rep, 2016,36(3):1649-1657.
doi: 10.3892/or.2016.4919
[24] Zhan HX, Wang Y, Li C , et al. LincRNA-ROR pro-motes invasion, metastasis and tumor growth in pan-creatic cancer through activating ZEB1 pathway[J]. Cancer Lett, 2016,374(2):261-271.
doi: 10.1016/j.canlet.2016.02.018
[25] Chen YM, Liu Y, Wei HY , et al. Linc-ROR induces epithelial-mesenchymal transition and contributes to drug resistance and invasion of breast cancer cells[J]. Tumor Biol, 2016,37(8):10861-10870.
doi: 10.1007/s13277-016-4909-1
[26] Chen SA, Ma PP, Zhao Y , et al. Biological function and mechanism of MALAT-1 in renal cell carcinoma proliferation and apoptosis: role of the MALAT-1-Livin protein interaction[J]. J Physiol Sci, 2016,67(5):577-585.
[27] Huang JK, Ma L, Song WH , et al. MALAT1 promotes the proliferation and invasion of thyroid cancer cells via regulating the expression of IQGAP1[J]. Biomed Pharmacother, 2016,83:1-7.
doi: 10.1016/j.biopha.2016.05.039
[28] Yao WJ, Bai Y, Li Y , et al. Upregulation of MALAT-1 and its association with survival rate and the effect on cell cycle and migration in patients with esophageal squamous cell carcinoma[J]. Tumor Biol, 2015,37(4):4305-4312.
[29] Han T, Jiao F, Hu H , et al. EZH2 promotes cell mi-gration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer[J]. Oncotarget, 2016,7(10):11194-11207.
[30] Zhang Y, Wang T, Huang HQ , et al. Human MALAT-1 long non-coding RNA is overexpressed in cervical cancer metastasis and promotes cell proliferation, in- vasion and migration[J]. J BUON, 2015,20(6):1497-1503.
[31] Chang SM, Hu WW , Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis[J]. J Cell Physiol, 2017,233(4):3384-3396.
[32] Zhou X, Liu S, Cai G , et al. Long Non coding RNA MALAT1 promotes tumor growth and metastasis by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma[J]. Sci Rep, 2015,5:15972.
doi: 10.1038/srep15972
[33] Zhang TH, Liang LZ, Liu XL , et al. Long non-coding RNA MALAT1 interacts with miR-124 and modulates tongue cancer growth by targeting JAG1[J]. Oncol Rep, 2017,37(4):2087-2094.
doi: 10.3892/or.2017.5445
[34] Fang Z, Zhang S, Wang Y , et al. Long non-coding RNA MALAT-1 modulates metastatic potential of tongue squamous cell carcinomas partially through the regulation of small proline rich proteins[J]. BMC Cancer, 2016,16:706.
doi: 10.1186/s12885-016-2735-x
[35] Wu YS, Zhang L, Zhang L , et al. Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cad-herin in oral squamous cell carcinoma[J]. Int J Oncol, 2015,46(6):2586-2594.
doi: 10.3892/ijo.2015.2976
[36] Liu H, Li Z, Wang C , et al. Expression of long non-coding RNA-HOTAIR in oral squamous cell carcinoma Tca8113 cells and its associated biological behavior[J]. Am J Transl Res, 2016,8(11):4726-4734.
[37] Jia LF, Wei SB, Gan YH , et al. Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma[J]. Int J Cancer, 2014,135(10):2282-2293.
doi: 10.1002/ijc.28667 pmid: 24343426
[38] Liu ZX, Wu C, Xie NN , et al. Long non-coding RNA MEG3 inhibits the proliferation and metastasis of oral squamous cell carcinoma by regulating the WNT/β-catenin signaling pathway[J]. Oncol Lett, 2017,14(4):4053-4058.
doi: 10.3892/ol.2017.6682
[39] Zhang DM, Lin ZY, Yang ZH , et al. IncRNA H19 promotes tongue squamous cell carcinoma progression through β-catenin/GSK3β/EMT signaling via asso-ciation with EZH2[J]. Am J Transl Res, 2017,9(7):3474-3486.
[1] 和子慕, 李风兰. 数字化口腔定位支架在头颈部肿瘤放射治疗中的应用现状[J]. 国际口腔医学杂志, 2024, 51(1): 28-35.
[2] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[3] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[4] 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717.
[5] 姜玥莹,何宇添,李婷,周蓉卉. 近红外荧光探针在口腔癌诊断中应用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 407-413.
[6] 赵玲帆, 周杨, 叶鑫鑫, 张强. 肾移植术后腮腺低分化黏液表皮样癌1例[J]. 国际口腔医学杂志, 2023, 50(4): 419-422.
[7] 范琳,孙江. 微针在口腔医学中的应用[J]. 国际口腔医学杂志, 2023, 50(4): 472-478.
[8] 张超颖,李怡宁,龚佳幸,王慧明. 2022年世界卫生组织指南头颈部肿瘤分类的解读:牙源性和颌面部骨肿瘤[J]. 国际口腔医学杂志, 2023, 50(3): 263-271.
[9] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
[10] 李春洁, 毕小琴, 朱桂全. 口腔颌面部肿瘤患者游离皮瓣修复术的并发症预防及处理[J]. 国际口腔医学杂志, 2023, 50(2): 127-137.
[11] 林慧平,徐婷,林军. 人工智能在口腔癌和口腔潜在恶性疾病诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 138-145.
[12] 王太萍,石兴莲,李喆臻,刘梅,姜健红. 口腔癌患者心理因素及干预现状分析[J]. 国际口腔医学杂志, 2023, 50(2): 203-209.
[13] 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236.
[14] 罗婉逸,韩居熺,周学东,彭显,郑欣. 具核梭杆菌促进结直肠癌发生发展机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 52-60.
[15] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .