国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (1): 52-60.doi: 10.7518/gjkq.2023011
罗婉逸1(),韩居熺1,周学东1,2,彭显1,2,郑欣1,2()
Luo Wanyi1(),Han Juxi1,Zhou Xuedong1,2,Peng Xian1,2,Zheng Xin1,2()
摘要:
具核梭杆菌是一种革兰阴性厌氧菌,广泛定植于人体口腔内,是公认的牙周致病菌。该菌不仅在牙周病、口腔癌等口腔疾病中起着重要作用,还与全身各系统多种疾病存在关系,包括心血管疾病、骨关节炎、妊娠不良事件及各系统肿瘤。具核梭杆菌与结直肠癌的关系是当前研究的热点问题。存在肠道炎症的患者,牙周炎或可成为一个促进炎症向癌症转变的风险因素。具核梭杆菌可通过消化道及血液循环两条途径迁移到肠道,进一步通过黏附素-上皮细胞钙黏蛋白和黏附素-糖类肿瘤标记物两条途径与结直肠癌细胞特异性结合。具核梭杆菌对肿瘤内乏氧的高代谢环境具有较强的适应能力,可进一步促进肿瘤的糖酵解,互利共生的关系使得具核梭杆菌在肿瘤中大量富集。与结直肠癌细胞结合后,具核梭杆菌通过调控经典Wnt信号通、核因子κB等信号通路,改变免疫微环境,促进肿瘤的生长和转移,并表现出抗化学治疗的作用,对结直肠癌的发生发展和治疗造成影响。
中图分类号:
1 | Gao L, Kang MS, Zhang MJ, et al. Polymicrobial periodontal disease triggers a wide radius of effect and unique virome[J]. Npj Biofilms Microbiomes, 2020, 6: 10. |
2 | Tefiku U, Popovska M, Cana A, et al. Determination of the role of Fusobacterium nucleatum in the pathogenesis in and out the mouth[J]. Pril (Makedon Akad Nauk Umet Odd Med Nauki), 2020, 41(1): 87-99. |
3 | Chukkapalli SS, Ambadapadi S, Varkoly K, et al. Impaired innate immune signaling due to combined Toll-like receptor 2 and 4 deficiency affects both pe-riodontitis and atherosclerosis in response to polybacterial infection[J]. Pathog Dis, 2018, 76(8): fty-076. |
4 | Ebbers M, Lübcke PM, Volzke J, et al. Interplay between P. gingivalis, F. nucleatum and A. actinomycetemcomitans in murine alveolar bone loss, arthritis onset and progression[J]. Sci Rep, 2018, 8: 15129. |
5 | Vander Haar EL, So J, Gyamfi-Bannerman C, et al. Fusobacterium nucleatum and adverse pregnancy outcomes: epidemiological and mechanistic evidence[J]. Anaerobe, 2018, 50: 55-59. |
6 | Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by Fusobacterium nucleatum accelera-tes tumor growth and metastatic progression[J]. Nat Commun, 2020, 11: 3259. |
7 | Alkharaan H, Lu LY, Gabarrini G, et al. Circulating and salivary antibodies to Fusobacterium nucleatum are associated with cystic pancreatic neoplasm malignancy[J]. Front Immunol, 2020, 11: 2003. |
8 | Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-speci-fic intracellular bacteria[J]. Science, 2020, 368(6494): 973-980. |
9 | Kalaora S, Nagler A, Nejman D, et al. Identification of bacteria-derived HLA-bound peptides in melanoma[J]. Nature, 2021, 592(7852): 138-143. |
10 | Nwizu N, Wactawski-Wende J, Genco RJ. Periodontal disease and cancer: epidemiologic studies and possible mechanisms[J]. Periodontol 2000, 2020, 83(1): 213-233. |
11 | Michaud DS, Liu Y, Meyer M, et al. Periodontal di-sease, tooth loss, and cancer risk in male health professionals: a prospective cohort study[J]. Lancet Oncol, 2008, 9(6): 550-558. |
12 | Hiraki A, Matsuo K, Suzuki T, et al. Teeth loss and risk of cancer at 14 common sites in Japanese[J]. Cancer Epidemiol Biomarkers Prev, 2008, 17(5): 1222-1227. |
13 | Ren HG, Luu HN, Cai H, et al. Oral health and risk of colorectal cancer: results from three cohort stu-dies and a meta-analysis[J]. Ann Oncol, 2016, 27(7): 1329-1336. |
14 | Nwizu NN, Marshall JR, Moysich K, et al. Perio-dontal disease and incident cancer risk among postmenopausal women: results from the women’s hea-lth initiative observational cohort[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(8): 1255-1265. |
15 | Michaud DS, Kelsey KT, Papathanasiou E, et al. Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the Health Professionals Follow-up Study[J]. Ann Oncol, 2016, 27(5): 941-947. |
16 | Komiya Y, Shimomura Y, Higurashi T, et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity[J]. Gut, 2019, 68(7): 1335-1337. |
17 | Kitamoto S, Nagao-Kitamoto H, Jiao Y, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis[J]. Cell, 2020, 182(2): 447-462.e14. |
18 | Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease: mechanisms and management[J]. Gastroenterology, 2022, 162(3): 715-730. |
19 | Rajamäki K, Taira A, Katainen R, et al. Genetic and epigenetic characteristics of inflammatory bowel disease-associated colorectal cancer[J]. Gastroente-rology, 2021, 161(2): 592-607. |
20 | Nadeem MS, Kumar V, Al-Abbasi FA, et al. Risk of colorectal cancer in inflammatory bowel diseases[J]. Semin Cancer Biol, 2020(64): 51-60. |
21 | Koliarakis I, Messaritakis I, Nikolouzakis TK, et al. Oral bacteria and intestinal dysbiosis in colorectal cancer[J]. Int J Mol Sci, 2019, 20(17): 4146. |
22 | Nakajima M, Arimatsu K, Kato T, et al. Oral admi-nistration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver[J]. PLoS One, 2015, 10(7): e0134234. |
23 | Parahitiyawa NB, Jin LJ, Leung WK, et al. Micro-biology of odontogenic bacteremia: beyond endocarditis[J]. Clin Microbiol Rev, 2009, 22(1): 46-64. |
24 | Mima K, Cao Y, Chan AT, et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location[J]. Clin Transl Gastroenterol, 2016, 7(11): e200. |
25 | Ito M, Kanno S, Nosho K, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway[J]. Int J Cancer, 2015, 137(6): 1258-1268. |
26 | Phipps AI, Chan AT, Ogino S. Anatomic subsite of primary colorectal cancer and subsequent risk and distribution of second cancers[J]. Cancer, 2013, 119(17): 3140-3147. |
27 | Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013, 14(2): 207-215. |
28 | Anu V, Madan Kumar PD, Shivakumar M. Salivary flow rate, pH and buffering capacity in patients undergoing fixed orthodontic treatment-a prospective study[J]. Indian J Dent Res, 2019, 30(4): 527. |
29 | Guven DC, Dizdar O, Alp A, et al. Analysis of Fusobacterium nucleatum and Streptococcus gallolyticus in saliva of colorectal cancer patients[J]. Biomar-kers Med, 2019, 13(9): 725-735. |
30 | Engevik AC, Kaji I, Goldenring JR. The physiology of the gastric parietal cell[J]. Physiol Rev, 2020, 100(2): 573-602. |
31 | Seedorf H, Griffin NW, Ridaura VK, et al. Bacteria from diverse habitats colonize and compete in the mouse gut[J]. Cell, 2014, 159(2): 253-266. |
32 | Li BL, Ge Y, Cheng L, et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice[J]. Int J Oral Sci, 2019, 11: 10. |
33 | Peters BA, Wu J, Hayes RB, et al. The oral fungal mycobiome: characteristics and relation to periodontitis in a pilot study[J]. BMC Microbiol, 2017, 17(1): 157. |
34 | Saus E, Iraola-Guzmán S, Willis JR, et al. Micro-biome and colorectal cancer: roles in carcinogenesis and clinical potential[J]. Mol Aspects Med, 2019, 69: 93-106. |
35 | Abed J, Emgård JEM, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc[J]. Cell Host Microbe, 2016, 20(2): 215-225. |
36 | Sharma N, Bhatia S, Sodhi AS, et al. Oral micro-biome and health[J]. AIMS Microbiol, 2018, 4(1): 42-66. |
37 | Walker MY, Pratap S, Southerland JH, et al. Role of oral and gut microbiome in nitric oxide-mediated colon motility[J]. Nitric Oxide, 2018, 73: 81-88. |
38 | Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1): 30-44. |
39 | Fardini Y, Wang XW, Témoin S, et al. Fusobacte-rium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity[J]. Mol Microbiol, 2011, 82(6): 1468-1480. |
40 | Jang JY, Baek KJ, Choi Y, et al. Relatively low invasive capacity of Porphyromonas gingivalis strains into human gingival fibroblasts in vitro [J]. Arch Oral Biol, 2017, 83: 265-271. |
41 | Xue Y, Xiao H, Guo SH, et al. Indoleamine 2,3-dioxygenase expression regulates the survival and proliferation of Fusobacterium nucleatum in THP-1-derived macrophages[J]. Cell Death Dis, 2018,9(3): 355. |
42 | Chen WG, Liu FL, Ling ZX, et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer[J]. PLoS One, 2012, 7(6): e39743. |
43 | Rubinstein MR, Wang XW, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2): 195-206. |
44 | Gallimidi AB, Fischman S, Revach B, et al. Perio-dontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model[J]. Oncotarget, 2015, 6(26): 22613-22623. |
45 | Kostic AD, Gevers D, Pedamallu CS, et al. Geno-mic analysis identifies association of Fusobacterium with colorectal carcinoma[J]. Genome Res, 2012, 22(2): 292-298. |
46 | Yachida S, Mizutani S, Shiroma H, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer[J]. Nat Med, 2019, 25(6): 968-976. |
47 | Kasper SH, Morell-Perez C, Wyche TP, et al. Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment[J]. Sci Rep, 2020, 10: 5321. |
48 | Hong J, Guo FF, Lu SY, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer[J]. Gut, 2021, 70(11): 2123-2137. |
49 | Zheng X, Liu R, Zhou CC, et al. ANGPTL4-media-ted promotion of glycolysis facilitates the colonization of Fusobacterium nucleatum in colorectal cancer[J]. Cancer Res, 2021, 81(24): 6157-6170. |
50 | Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1[J]. EMBO Rep, 2019, 20(4): e47638. |
51 | Morikawa R, Nemoto Y, Yonemoto Y, et al. Intraepithelial lymphocytes suppress intestinal tumor growth by cell-to-cell contact via CD103/E-cadherin signal[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(5): 1483-1503. |
52 | Ouyang HY, Luong P, Frödin M, et al. p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth[J]. Oncogene, 2020, 39(33): 5570-5587. |
53 | Shi CZ, Yang YZ, Xia Y, et al. Novel evidence for an oncogenic role of microRNA-21 in colitis-asso-ciated colorectal cancer[J]. Gut, 2016, 65(9): 1470-1481. |
54 | Yang YZ, Weng WH, Peng JJ, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activa-ting toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of MicroRNA-21[J]. Gastroenterology, 2017, 152(4): 851-866.e24. |
55 | Mima K, Nishihara R, Qian ZR, et al. Fusobacte-rium nucleatumin colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12): 1973-1980. |
56 | Yu T, Guo FF, Yu YN, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3): 548-563.e16. |
57 | Zhang S, Yang YZ, Weng WH, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer[J]. J Exp Clin Cancer Res, 2019, 38: 14. |
58 | Hu XY, Meng Y, Xu L, et al. Cul4 E3 ubiquitin ligase regulates ovarian cancer drug resistance by targeting the antiapoptotic protein BIRC3[J]. Cell Death Dis, 2019, 10(2): 104. |
59 | Rouhrazi H, Turgan N, Oktem G. Zoledronic acid overcomes chemoresistance by sensitizing cancer stem cells to apoptosis[J]. Biotech Histochem, 2018, 93(2): 77-88. |
60 | Huangfu SC, Zhang WB, Zhang HR, et al. Clinicopathological and prognostic significance of Fusobacterium nucleatum infection in colorectal cancer: a meta-analysis[J]. J Cancer, 2021, 12(6): 1583-1591. |
61 | Li YY, Ge QX, Cao J, et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients[J]. World J Gastroenterol, 2016, 22(11): 3227-3233. |
62 | Chen SJ, Su TT, Zhang Y, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7[J]. Gut Microbes, 2020, 11(3): 511-525. |
63 | Huang B, Song JH, Cheng Y, et al. Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increa-sing KRT7 expression[J]. Oncogene, 2016, 35(37): 4927-4936. |
64 | Wang W, Wang J, Yang C, et al. MicroRNA-216a targets WT1 expression and regulates KRT7 transcription to mediate the progression of pancreatic cancer-a transcriptome analysis[J]. IUBMB Life, 2021, 73(6): 866-882. |
65 | Zhang ZY, Tu KJ, Liu FY, et al. FoxM1 promotes the migration of ovarian cancer cell through KRT5 and KRT7[J]. Gene, 2020, 757: 144947. |
66 | Harbaum L, Pollheimer MJ, Kornprat P, et al. Keratin 7 expression in colorectal cancer-freak of nature or significant finding[J]. Histopathology, 2011, 59(2): 225-234. |
67 | An Q, Liu T, Wang MY, et al. KRT7 promotes epithelial-mesenchymal transition in ovarian cancer via the TGF‑β/Smad2/3 signaling pathway[J]. Oncol Rep, 2021, 45(2): 481-492. |
68 | Chen YY, Chen Y, Zhang JX, et al. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression[J]. Theranostics, 2020, 10(1): 323-339. |
69 | Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232. |
70 | Guo SH, Chen J, Chen FF, et al. Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16[J]. Gut, 2020: gutjnl-2020-321187. |
71 | Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer[J]. Science, 2017, 358(6369): 1443-1448. |
72 | Bruger AM, Vanhaver C, Bruderek K, et al. Protocol to assess the suppression of T-cell proliferation by human MDSC[J]. Methods Enzymol, 2020, 632: 155-192. |
73 | de Cicco P, Ercolano G, Ianaro A. The new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion[J]. Front Immunol, 2020, 11: 1680. |
74 | Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355. |
75 | Chen T, Li Q, Wu J, et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism[J]. Cancer Immunol Immunother, 2018, 67(10): 1635-1646. |
76 | Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. |
77 | Locati M, Curtale G, Diversity Mantovani A., me-chanisms, and significance of macrophage plasticity [J]. Annu Rev Pathol, 2020, 15: 123-147. |
78 | Braune J, Weyer U, Hobusch C, et al. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity[J]. J Immunol, 2017, 198(7): 2927-2934. |
[1] | 耿奉雪 潘亚萍. 生物膜中不同定植阶段细菌间的相互作用及模型[J]. 国际口腔医学杂志, 2014, 41(4): 431-435. |
[2] | 薛红蕾1 杨德琴2. 具核梭杆菌在牙菌斑生物膜中的作用[J]. 国际口腔医学杂志, 2013, 40(5): 657-660. |
[3] | 郭杨1 张玉杰2综述 肖水清2审校. 具核梭杆菌生物学特性及检测手段的研究进展[J]. 国际口腔医学杂志, 2012, 39(6): 770-774. |
[4] | 李永凯1 段丁瑜2 赵蕾2,3 吴亚菲2,3 徐屹2,3 . 牙周菌斑生物膜的体外模型建立[J]. 国际口腔医学杂志, 2012, 39(1): 37-42. |
[5] | 吴燕岷,陈莉丽. 聚合酶链式反应在3种牙周病原菌检测中的应用[J]. 国际口腔医学杂志, 2001, 28(02): -. |
|