Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (2): 209-213.doi: 10.7518/gjkq.2018.02.015

• Reviews • Previous Articles     Next Articles

Cytotoxic mechanism of triethylene glycol dimethacrylate

Chen Xiuchun, Zhang Zhimin, Hong Lihua, Zhang Yaqi, Zheng Peng, Li Wenyue   

  1. Key Laboratory for Tooth Development and Jaw Reconstruction and Regeneration of Jilin Province
    Dept. of Conservative Dentistry and Endodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
  • Received:2017-08-31 Revised:2017-12-20 Online:2018-03-01 Published:2018-03-01
  • Supported by:
    This study was supported by the Special Funds for Provincial Industrial Innovation in Jilin Province (2016c045-3).

Abstract: Cell toxicity is a pure cell killing event caused by a cell or chemical substances. The chemical substances act on the basic structure of the cell and/or physiological processes, such as cell membrane and cytoskeleton structure, cell metabolism, synthesis of cellular components or products, degradation or release, ion regulation and cell division. Which leads to adverse reactions such as cell survival, proliferation and/or functional disorder. Triethylene glycol dimethacrylate (TEGDMA) is a commonly used diluent of many resin-based dental composites. It is an important relevant monomer responsible for the cytotoxicity of the resin matrix. The monomer can lead to a series of toxic reactions, such as oxidative imbalance, apoptosis, DNA damage and so on. In this paper, the research advances in mechanism of cytotoxicity induced by TEGDMA monomer is reviewed, the aim is to lay the foundation for further clarifying the mechanism of toxicity and to reduce or eliminate the toxic effect.

Key words: triethylene glycol dimethacrylate, oxidative stress, cytotoxicity, gene toxicity, apoptosis

CLC Number: 

  • Q256

TrendMD: 
[1] Geurtsen W, Leyhausen G.Chemical-biological interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA)[J]. J Dent Res, 2001, 80(12):2046-2050.
[2] Volk J, Engelmann J, Leyhausen G, et al.Effects of three resin monomers on the cellular glutathione concentration of cultured human gingival fibroblasts[J]. Dent Mater, 2006, 22(6):499-505.
[3] Chang HH, Chang MC, Huang GF, et al.Effect of triethylene glycol dimethacrylate on the cytotoxicity, cyclooxygenase-2 expression and prostanoids pro-duction in human dental pulp cells[J]. Int Endod J, 2012, 45(9):848-858.
[4] Volk J, Leyhausen G, Geurtsen W.Glutathione level and genotoxicity in human oral keratinocytes ex-posed to TEGDMA[J]. J Biomed Mater Res Part B Appl Biomater, 2012, 100(2):391-399.
[5] Lee DH, Lim BS, Lee YK, et al.Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures[J]. Dent Mater, 2006, 22(12):1086-1092.
[6] Huang FM, Kuan YH, Lee SS, et al.Cytotoxicity and genotoxicity of triethyleneglycol-dimethacrylate in macrophages involved in DNA damage and caspases activation[J]. Environ Toxicol, 2015, 30(5):581-588.
[7] Schweikl H, Hartmann A, Hiller KA, et al.Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest by N-acetylcysteine[J]. Dent Mater, 2007, 23(6):688-695.
[8] Schweikl H, Altmannberger I, Hanser N, et al.The effect of triethylene glycol dimethacrylate on the cell cycle of mammalian cells[J]. Biomaterials, 2005, 26(19):4111-4118.
[9] Samuelsen JT, Dahl JE, Karlsson S, et al.Apoptosis induced by the monomers HEMA and TEGDMA involves formation of ROS and differential activation of the MAP-kinases p38, JNK and ERK[J]. Dent Mater, 2007, 23(1):34-39.
[10] Spagnuolo G, Desiderio C, Rivieccio V, et al.In vitro cellular detoxification of triethylene glycol dimethacrylate by adduct formation with N-acety-lcysteine[J]. Dent Mater, 2013, 29(8):e153-e160.
[11] Ginzkey C, Zinnitsch S, Steussloff G, et al.Assess-ment of HEMA and TEGDMA induced DNA damage by multiple genotoxicological endpoints in human lymphocytes[J]. Dent Mater, 2015, 31(8):865-876.
[12] Janke V, von Neuhoff N, Schlegelberger B, et al. TEGDMA causes apoptosis in primary human gin-gival fibroblasts[J]. J Dent Res, 2003, 82(10):814-818.
[13] Batarseh G, Windsor LJ, Labban NY, et al.Triethy-lene glycol dimethacrylate induction of apoptotic proteins in pulp fibroblasts[J]. Oper Dent, 2014, 39(1):E1-E8.
[14] Iwama K, Nakajo S, Aiuchi T, et al.Apoptosis in-duced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+-dependent production of superoxide[J]. Int J Cancer, 2001, 92(4):518-526.
[15] Srinivasula SM, Datta P, Fan XJ, et al.Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway[J]. J Biol Chem, 2000, 275(46):36152-36157.
[16] Gallorini M, Sancilio S, Zara S, et al.Involvement of mitochondrial signalling pathway in HGFs/S. mitis coculture response to TEGDMA treatment[J]. J Bio-med Mater Res A, 2014, 102(11):3931-3938.
[17] Hatok J, Racay P.Bcl-2 family proteins: master re-gulators of cell survival[J]. Biomol Concepts, 2016, 7(4):259-270.
[18] Schmalz G, Krifka S, Schweikl H.Toll-like recep-tors, LPS, and dental monomers[J]. Adv Dent Res, 2011,23(3):302-306.
[19] Schweikl H, Hiller KA, Eckhardt A, et al.Differen-tial gene expression involved in oxidative stress response caused by triethylene glycol dimethacry-late[J]. Biomaterials, 2008, 29(10):1377-1387.
[20] Eckhardt A, Gerstmayr N, Hiller KA, et al.TEG-DMA-induced oxidative DNA damage and activation of ATM and MAP kinases[J]. Biomaterials, 2009, 30(11):2006-2014.
[21] Krifka S, Spagnuolo G, Schmalz G, et al.A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers[J]. Biomaterials, 2013, 34(19):4555-4563.
[22] Yamada M, Ueno T, Minamikawa H, et al.N-acetyl cysteine alleviates cytotoxicity of bone substitute[J]. J Dent Res, 2010, 89(4):411-416.
[23] Galler KM, Schweikl H, Hiller KA, et al.TEGDMA reduces mineralization in dental pulp cells[J]. J Dent Res, 2011, 90(2):257-262.
[24] Kim NR, Lim BS, Park HC, et al.Effects of N- acetylcysteine on TEGDMA- and HEMA-induced suppression of osteogenic differentiation of human osteosarcoma MG63 cells[J]. J Biomed Mater Res Part B Appl Biomater, 2011, 98(2):300-307.
[25] Schweikl H, Spagnuolo G, Schmalz G.Genetic and cellular toxicology of dental resin monomers[J]. J Dent Res, 2006, 85(10):870-877.
[26] Zhang QM, Nakamura N, Yonekura S, et al.Biolo-gical consequences and base excision repair me-chanisms of oxidative base damage in DNA[J]. Tanpakushitsu Kakusan Koso, 2005, 50(4):322-329.
[27] Nowsheen S, Yan ES.The intersection between DNA damage response and cell death pathways[J]. Exp Oncol, 2012(3):243-254.
[28] Eckhardt A, Müller P, Hiller KA, et al.Influence of TEGDMA on the mammalian cell cycle in compa-rison with chemotherapeutic agents[J]. Dent Mater, 2010, 26(3):232-241.
[29] Mavrogonatou E, Eliades T, Eliades G, et al.The effect of triethylene glycol dimethacrylate on p53-dependent G2 arrest in human gingival fibroblasts[J]. Biomaterials, 2010, 31(33):8530-8538.
[30] Durner J, Dębiak M, Bürkle A, et al.Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts[J]. Arch Toxicol, 2011, 85(2):143-148.
[31] Nocca G, Ragno R, Carbone V, et al.Identification of glutathione-methacrylates adducts in gingival fibroblasts and erythrocytes by HPLC-MS and capil-lary electrophoresis[J]. Dent Mater, 2011,27(5):e87-e98.
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[3] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[4] Ding Xu,Li Xin,Li Yan,Xia Boyuan,Yu Weixian. Research progress on the relationship among oxidative stress, mitochondrial quality control, and periodontitis [J]. Int J Stomatol, 2021, 48(4): 385-390.
[5] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[6] Zhou Feng,Chen Ye,Chen Chen,Zhang Yining,Geng Ruiman,Liu Ji. Mechanism of sirtuin 1 in regulating periodontitis [J]. Int J Stomatol, 2021, 48(3): 341-346.
[7] Zhuo Yang,Shengdan Zhang,Chengcheng Liu,Yi Ding. Research progress on salivary markers for diagnosis of aggressive periodontitis [J]. Inter J Stomatol, 2019, 46(1): 55-61.
[8] Donglei Wu,Jing Liu. Research progress on the association between oxidative stress injury and certain oral diseases [J]. Inter J Stomatol, 2019, 46(1): 62-67.
[9] Zhiqiang Wang,Yali Liu,Lijuan Ma,Lan Yang,Ruoyu Wang,Shuting Gao. Effects of salidroside on proliferation, apoptosis, cycle and migration of human tongue cancer CAL-27 cells [J]. Inter J Stomatol, 2018, 45(6): 678-685.
[10] Zhan Yeming, Zhang Mingzhu. Research progress on the relevance between drug-induced gingival overgrowth and cell proliferation and apoptosis [J]. Inter J Stomatol, 2018, 45(2): 199-203.
[11] Zhang Peng, Ding Yi, Wang Qi. Research on the role of inflammaging in diabetes mellitus-associated periodontitis [J]. Inter J Stomatol, 2017, 44(6): 664-668.
[12] Wang Kun, Ge Yichen, Cui Bomiao, Gou Yaping, Sun Chongkui, Long Min, Xiao Liying, Li Yan.. Study on the antitumor effect of telomerase Cajal body protein 1-shRNA on human oral squamous cell carcinoma in nude mice [J]. Inter J Stomatol, 2017, 44(1): 32-36.
[13] Yu Wenwen, Wang Xu, Sun Xinhua. Research progress on biological safety of orthodontic metallic appliance [J]. Inter J Stomatol, 2015, 42(5): 592-596.
[14] Zhu Yuting, Liu Jiangfeng, Li Xiaoxing, Yang Huixiao, Huang Jiangyong, Yu Miao, Chen Bingxun, Li Yanli.. Lipopolysaccharides upregulated the expression of B-cell lymphoma-2 and its associated X protein in human dental pulp cells [J]. Inter J Stomatol, 2015, 42(4): 391-394.
[15] Wu Yuhong, Lin Juhong, Zhang Hongmei. Physicochemical and biological properties of Portland cement and mineral trioxide aggregate and their applications [J]. Inter J Stomatol, 2014, 41(6): 699-702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .