Int J Stomatol ›› 2021, Vol. 48 ›› Issue (4): 385-390.doi: 10.7518/gjkq.2021079

• Periodontitis • Previous Articles     Next Articles

Research progress on the relationship among oxidative stress, mitochondrial quality control, and periodontitis

Ding Xu1(),Li Xin1,Li Yan1,Xia Boyuan1,Yu Weixian2,3()   

  1. 1. Dept. of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, China
    2. Dept. of Geriatric Stomatology, Hospital of Stomatology, Jilin University, Changchun 130021, China
    3. Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
  • Received:2020-12-25 Revised:2021-03-28 Online:2021-07-01 Published:2021-06-30
  • Contact: Weixian Yu E-mail:1115087326@qq.com;yu-wei-xian@163.com
  • Supported by:
    International Cooperation Project of Science and Technology Development Plan of Science and Technology Department of Jilin Province(20180414053-GH);Natural Science Foundation of Science and Technology Department of Jilin Province(20190201058JC);Science and Technology Project of Finance Department of Jilin Pro-vince(JCSZ2019378-1)

Abstract:

Periodontitis is a chronic inflammation of the periodontal supporting tissue caused by plaque microorga-nisms. In recent years, scholars have paid close attention to the relationship between mitochondrial quality control and periodontitis. Mitochondrial quality control includes mitochondrial biogenesis, kinetics, and autophagy. Any part of the disorder will lead to mitochondrial dysfunction and then induce the occurrence of related diseases. Some scholars have pointed out that oxidative stress can lead to an imbalance in mitochondrial quality control, which plays a key role in the development of periodontitis. This article reviews the research progress of mitochondrial dysfunction caused by oxidative stress, peroxisome-proliferator-activated receptor-gamma co-activator 1α, nuclear respiratory factor 1/2, mitofusin 1/2, dynamin related protein 1, PTEN-induced putative kinase 1 and other proteins in periodontitis. It aims to provide new ideas for the prevention and treatment of periodontitis.

Key words: mitochondria, oxidative stress, perio-dontitis

CLC Number: 

  • R781.4

TrendMD: 
[1] Vasconcelos ACCG, Vasconcelos DFP, Pereira da Silva FR, et al. Periodontitis causes abnormalities in the liver of rats[J]. J Periodontol, 2019,90(3):295-305.
doi: 10.1002/JPER.18-0226
[2] Bhattarai G, Poudel SB, Kook SH, et al. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis[J]. Acta Biomater, 2016,29:398-408.
doi: S1742-7061(15)30161-6 pmid: 26497626
[3] Kondadi AK, Anand R, Reichert AS. Functional interplay between cristae biogenesis, mitochondrial dynamics and mitochondrial DNA integrity[J]. Int J Mol Sci, 2019,20(17):E4311.
[4] Govindaraj P, Khan NA, Gopalakrishna P, et al. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis[J]. Mitochondrion, 2011,11(3):504-512.
doi: 10.1016/j.mito.2011.01.009
[5] Chen YT, Ji YH, Jin X, et al. Mitochondrial abnormalities are involved in periodontal ligament fibroblast apoptosis induced by oxidative stress[J]. Biochem Biophys Res Commun, 2019,509(2):483-490.
doi: 10.1016/j.bbrc.2018.12.143
[6] Sun XY, Mao YX, Dai PP, et al. Mitochondrial dysfunction is involved in the aggravation of periodontitis by diabetes[J]. J Clin Periodontol, 2017,44(5):463-471.
doi: 10.1111/jcpe.2017.44.issue-5
[7] Picca A, Mankowski RT, Burman JL, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing[J]. Nat Rev Cardiol, 2018,15(9):543-554.
doi: 10.1038/s41569-018-0059-z pmid: 30042431
[8] Whitaker RM, Corum D, Beeson CC, et al. Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases[J]. Annu Rev Pharmacol Toxicol, 2016,56:229-249.
doi: 10.1146/annurev-pharmtox-010715-103155
[9] Wu NN, Zhang YM, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging[J]. Oxidative Med Cell Longev, 2019,2019:1-15.
[10] Chandel NS. Mitochondria as signaling organelles[J]. BMC Biol, 2014,12:34.
doi: 10.1186/1741-7007-12-34
[11] Zhu JH, Wang KZ, Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival[J]. Autophagy, 2013,9(11):1663-1676.
doi: 10.4161/auto.24135
[12] Vasileiou P, Evangelou K, Vlasis K, et al. Mitochondrial homeostasis and cellular senescence[J]. Cells, 2019,8(7):686.
doi: 10.3390/cells8070686
[13] Fu WY, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors[J]. Stem Cells Int, 2019,2019:9757201.
[14] Chang JS, Huypens P, Zhang YB, et al. Regulation of NT-PGC-1alpha subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1[J]. J Biol Chem, 2010,285(23):18039-18050.
doi: 10.1074/jbc.M109.083121
[15] Granata C, Jamnick NA, Bishop DJ. Principles of e-xercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis[J]. Sports Med, 2018,48(7):1541-1559.
doi: 10.1007/s40279-018-0894-4 pmid: 29675670
[16] Singh SP, Huck O, Abraham NG, et al. Kavain reduces Porphyromonas gingivalis-induced adipocyte inflammation: role of PGC-1α signaling[J]. J Immunol, 2018,201(5):1491-1499.
doi: 10.4049/jimmunol.1800321
[17] 蔡川, 黄也, 王婧, 等. 炎症微环境对牙周膜干细胞氧化应激和线粒体生成的影响[J]. 中华老年口腔医学杂志, 2018,16(6):327-332.
Cai C, Huang Y, Wang J, et al. Effects of inflamma-tory microenvironment on the oxidative stress and mitochondriogenesis of human periodontal ligament stem cells[J]. Chin J Geriatr Dent, 2018,16(6):327-332.
[18] Hong RD, Wang ZG, Sui AH, et al. Gingival mesenchymal stem cells attenuate pro-inflammatory ma-crophages stimulated with oxidized low-density lipoprotein and modulate lipid metabolism[J]. Arch Oral Biol, 2019,98:92-98.
doi: 10.1016/j.archoralbio.2018.11.007
[19] Hayashi G, Jasoliya M, Sahdeo S, et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans[J]. Hum Mol Genet, 2017,26(15):2864-2873.
doi: 10.1093/hmg/ddx167
[20] Fão L, Mota SI, Rego AC. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s di-seases[J]. Ageing Res Rev, 2019,54:100942.
doi: 10.1016/j.arr.2019.100942
[21] Park SY, Park DJ, Kim YH, et al. Schisandra chinensis α-iso-cubebenol induces heme oxygenase-1 expression through PI3K/Akt and Nrf2 signaling and has anti-inflammatory activity in Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages[J]. Int Immunopharmacol, 2011,11(11):1907-1915.
doi: 10.1016/j.intimp.2011.07.023
[22] Sima C, Aboodi GM, Lakschevitz FS, et al. Nuclear factor erythroid 2-related factor 2 down-regulation in oral neutrophils is associated with periodontal o-xidative damage and severe chronic periodontitis[J]. Am J Pathol, 2016,186(6):1417-1426.
doi: 10.1016/j.ajpath.2016.01.013
[23] Chiu AV, Saigh MA, McCulloch CA, et al. The role of NrF2 in the regulation of periodontal health and disease[J]. J Dent Res, 2017,96(9):975-983.
doi: 10.1177/0022034517715007
[24] Harder B, Jiang T, Wu TD, et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention[J]. Biochem Soc Trans, 2015,43(4):680-686.
doi: 10.1042/BST20150020
[25] Murata H, Takamatsu H, Liu SL, et al. NRF2 regulates PINK1 expression under oxidative stress conditions[J]. PLoS One, 2015,10(11):e0142438.
doi: 10.1371/journal.pone.0142438
[26] Kataoka K, Ekuni D, Tomofuji T, et al. Visualization of oxidative stress induced by experimental pe-riodontitis in Keap1-dependent oxidative stress detector-luciferase mice[J]. Int J Mol Sci, 2016,17(11):E1907.
[27] Zhu CH, Zhao Y, Wu XY, et al. The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway[J]. J Periodontal Res, 2020,55(3):381-391.
doi: 10.1111/jre.v55.3
[28] Kanzaki H, Shinohara F, Kajiya M, et al. Nuclear Nrf2 induction by protein transduction attenuates osteoclastogenesis[J]. Free Radic Biol Med, 2014,77:239-248.
doi: 10.1016/j.freeradbiomed.2014.09.006
[29] Hyeon S, Lee H, Yang Y, et al. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation[J]. Free Radic Biol Med, 2013,65:789-799.
doi: 10.1016/j.freeradbiomed.2013.08.005
[30] Liu YL, Yang HX, Wen Y, et al. Nrf2 inhibits perio-dontal ligament stem cell apoptosis under excessive oxidative stress[J]. Int J Mol Sci, 2017,18(5):E1076.
[31] Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mt-DNA maintenance and embryogenesis in mice[J]. Nat Genet, 1998,18(3):231-236.
pmid: 9500544
[32] Ekstrand MI, Terzioglu M, Galter D, et al. Progressive Parkinsonism in mice with respiratory-chain-deficient dopamine neurons[J]. Proc Natl Acad Sci U S A, 2007,104(4):1325-1330.
pmid: 17227870
[33] Miyazaki T, Iwasawa M, Nakashima T, et al. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption[J]. J Biol Chem, 2012,287(45):37808-37823.
doi: 10.1074/jbc.M112.385369
[34] Bullón P, Román-Malo L, Marín-Aguilar F, et al. Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement[J]. Pharmacol Res, 2015,91:1-8.
doi: 10.1016/j.phrs.2014.10.007
[35] Anand R, Wai T, Baker MJ, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission[J]. J Cell Biol, 2014,204(6):919-929.
doi: 10.1083/jcb.201308006
[36] Tondera D, Grandemange S, Jourdain A, et al. SLP-2 is required for stress-induced mitochondrial hyperfusion[J]. EMBO J, 2009,28(11):1589-1600.
doi: 10.1038/emboj.2009.89
[37] Sharma A, Smith HJ, Yao P, et al. Causal roles of mitochondrial dynamics in longevity and healthy a-ging[J]. EMBO Rep, 2019,20(12):e48395.
[38] 翟启明, 李蓓, 王智伟, 等. 炎症微环境下线粒体融合蛋白2及其介导的内质网-线粒体偶联对牙周膜干细胞成骨分化能力的影响[J]. 中华口腔医学杂志, 2018,53(7):453-458.
Zhai QM, Li B, Wang ZW, et al. Endoplasmic re-ticulum-mitochondrial contact regulates osteogenic differentiation of periodontal ligament stem cells via mitofusion 2 in inflammatory microenvironment[J]. Chin J Stomatol, 2018,53(7):453-458.
[39] 翟启明, 李蓓, 刘露, 等. 线粒体融合蛋白-1对牙周膜干细胞成骨分化能力的影响[J]. 实用口腔医学杂志, 2018,34(2):172-177.
Zhai QM, Li B, Liu L, et al. Mitofusin-1 regulates osteogenic differentiation of periodontal ligament stem cells[J]. J Pract Stomatol, 2018,34(2):172-177.
[40] Thomenius M, Freel CD, Horn S, et al. Mitochon-drial fusion is regulated by reaper to modulate drosophila programmed cell death[J]. Cell Death Differ, 2011,18(10):1640-1650.
doi: 10.1038/cdd.2011.26
[41] Zhang X, Feng YF, Wang YP, et al. Resveratrol ameliorates disorders of mitochondrial biogenesis and dynamics in a rat chronic ocular hypertension model[J]. Life Sci, 2018,207:234-245.
doi: 10.1016/j.lfs.2018.06.010
[42] Gan XQ, Huang SB, Yu Q, et al. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction[J]. Biochem Biophys Res Commun, 2015,468(4):719-725.
doi: 10.1016/j.bbrc.2015.11.022
[43] He YT, Gan XQ, Zhang L, et al. CoCl2 induces apoptosis via a ROS-dependent pathway and Drp1-mediated mitochondria fission in periodontal ligament stem cells[J]. Am J Physiol Cell Physiol, 2018,315(3):C389-C397.
doi: 10.1152/ajpcell.00248.2017
[44] Rüb C, Wilkening A, Voos W. Mitochondrial quality control by the Pink1/Parkin system[J]. Cell Tissue Res, 2017,367(1):111-123.
doi: 10.1007/s00441-016-2485-8
[45] Becker D, Richter J, Tocilescu MA, et al. Pink1 kinase and its membrane potential (δψ)-dependent cleavage product both localize to outer mitochon-drial membrane by unique targeting mode[J]. J Biol Chem, 2012,287(27):22969-22987.
doi: 10.1074/jbc.M112.365700
[46] Okatsu K, Oka T, Iguchi M, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria[J]. Nat Commun, 2012,3:1016.
doi: 10.1038/ncomms2016 pmid: 22910362
[47] Yang CN, Kok SH, Wang HW, et al. Simvastatin alleviates bone resorption in apical periodontitis possibly by inhibition of mitophagy-related osteoblast apoptosis[J]. Int Endod J, 2019,52(5):676-688.
doi: 10.1111/iej.13055 pmid: 30537112
[48] Chiricosta L, Gugliandolo A, Diomede F, et al. Mo-ringin pretreatment inhibits the expression of genes involved in mitophagy in the stem cell of the human periodontal ligament[J]. Molecules, 2019,24(18):E3217.
[1] Zhou Feng,Chen Ye,Chen Chen,Zhang Yining,Geng Ruiman,Liu Ji. Mechanism of sirtuin 1 in regulating periodontitis [J]. Int J Stomatol, 2021, 48(3): 341-346.
[2] Zhuo Yang,Shengdan Zhang,Chengcheng Liu,Yi Ding. Research progress on salivary markers for diagnosis of aggressive periodontitis [J]. Inter J Stomatol, 2019, 46(1): 55-61.
[3] Donglei Wu,Jing Liu. Research progress on the association between oxidative stress injury and certain oral diseases [J]. Inter J Stomatol, 2019, 46(1): 62-67.
[4] Chen Xiuchun, Zhang Zhimin, Hong Lihua, Zhang Yaqi, Zheng Peng, Li Wenyue. Cytotoxic mechanism of triethylene glycol dimethacrylate [J]. Inter J Stomatol, 2018, 45(2): 209-213.
[5] Zhang Peng, Ding Yi, Wang Qi. Research on the role of inflammaging in diabetes mellitus-associated periodontitis [J]. Inter J Stomatol, 2017, 44(6): 664-668.
[6] Li Hejia1, Zhu Yang2, Li Dechao2.. Research progress on mitochondrial DNA damage repair in tumor [J]. Inter J Stomatol, 2012, 39(4): 479-481.
[7] Zhao Fei, Wang Ge.. Research progress on the cell regulation mechanisms of chronic toxicity of dental casting alloys [J]. Inter J Stomatol, 2012, 39(2): 244-247.
[8] Li Huajing, Fu Yun.. Effect of advanced oxidative protein products on diabetes -associated periodontitis [J]. Inter J Stomatol, 2011, 38(6): 677-680.
[9] Zhu Yang, Li Hejia, Li Dechao, Liu Jiguang.. γ-irradiation up-regulates the expression of mtDNA damage repair-related factors [J]. Inter J Stomatol, 2011, 38(5): 535-538.
[10] Xu Huixia, Fu Yun. . Role of oxidative stress in the pathogenesis of diabetes-related periodontitis [J]. Inter J Stomatol, 2011, 38(5): 592-595.
[11] FANG Jun-yan, LING Jun-qi. Research progress of resin monomer toxicity mechanism [J]. Inter J Stomatol, 2010, 37(3): 302-302~305.
[12] HAN Guo-dong, YUAN Rong-tao. Research progress of relationship between mitochondrial DNA mutation and head and [J]. Inter J Stomatol, 2010, 37(01): 65-65~67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .