Int J Stomatol ›› 2023, Vol. 50 ›› Issue (1): 19-24.doi: 10.7518/gjkq.2023020

• Periodontitis • Previous Articles     Next Articles

Research progress on the role and mechanism of occlusal trauma in the development of periodontitis

Liu Tiqian(),Liang Xing(),Liu Weiqing,Li Xiaohong,Zhu Rui.   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-06-26 Revised:2022-10-10 Online:2023-01-01 Published:2023-01-09
  • Contact: Xing Liang E-mail:liutiqian2021@163.com;xingliangdent@vip.163.com

Abstract:

Periodontitis is the most common reason for adult tooth loss, which negatively impacts the physical and mental health of patients. Recent studies have shown that occlusal trauma might be a risk factor for periodontitis: although occlusal force did not initiate periodontal disease, it could aggravate periodontitis. Therefore, this paper reviews the role of occlusal trauma in promoting inflammation, inhibiting osteogenesis, stimulating osteoclastogenesis, and related mole-cular mechanisms during the onset and progression of periodontitis.

Key words: periodontitis, occlusal trauma, inflammation, osteogenic differentiation, osteoclastogesis

CLC Number: 

  • R 781.4+5

TrendMD: 
1 Frencken JE, Sharma P, Stenhouse L, et al. Global epidemiology of dental caries and severe periodontitis-a comprehensive review[J]. J Clin Periodontol, 2017, 44(): S94-S105.
2 Ma QY, Ma ZS, Liang MM, et al. The role of physical forces in osteoclastogenesis[J]. J Cell Physiol, 2019, 234(8): 12498-12507.
3 Li L, Han MX, Li S, et al. Cyclic tensile stress du-ring physiological occlusal force enhances osteoge-nic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway[J]. DNA Cell Biol, 2013, 32(9): 488-497.
4 Zhu R, Zhang ZH, Lu BY, et al. Unloading of occlusal force aggravates alveolar bone loss in periodontitis[J]. J Periodontal Res, 2022, 57(5): 1070-1082.
5 Naert I, Duyck J, Vandamme K. Occlusal overload and bone/implant loss[J]. Clin Oral Implants Res, 2012, 23(): 95-107.
6 Fan JY, Caton JG. Occlusal trauma and excessive occlusal forces: narrative review, case definitions, and diagnostic considerations[J]. J Periodontol, 2018, 89(): S214-S222.
7 Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis[J]. Nat Rev Microbiol, 2012, 10(10): 717-725.
8 Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response[J]. Trends Immunol, 2014, 35(1): 3-11.
9 Usui M, Onizuka S, Sato T, et al. Mechanism of alveolar bone destruction in periodontitis-periodontal bacteria and inflammation[J]. Jpn Dent Sci Rev, 2021, 57: 201-208.
10 Martínez-García M, Hernández-Lemus E. Periodontal inflammation and systemic diseases: an overview[J]. Front Physiol, 2021, 12: 709438.
11 Passanezi E, Sant’Ana ACP. Role of occlusion in periodontal disease[J]. Periodontol 2000, 2019, 79(1): 129-150.
12 祁海龙, 王斯璐. 慢性牙周炎伴咬合创伤患者龈沟液炎性因子表达及与骨代谢指标的相关性研究[J]. 现代检验医学杂志, 2021, 36(5): 164-168.
Qi HL, Wang SL. Expression of inflammatory factors in gingival crevicular fluid and its correlation with bone metabolism in patients with chronic pe-riodontitis and occlusal Trauma [J]. J Mod Lab Med, 2021, 36(5): 164-168.
13 Zhou SY, Mahmood H, Cao CF, et al. Teeth under high occlusal force may reflect occlusal trauma-associated periodontal conditions in subjects with untreated chronic periodontitis[J]. Chin J Dent Res, 2017, 20(1): 19-26.
14 Iwata M, Saito A, Kuroda Y, et al. Interdisciplinary therapy for severe periodontitis with Angle class Ⅱdivision 1 malocclusion: a case report with 7-year fo-llow-up[J]. J Am Dent Assoc, 2019, 150(11): 960-971.
15 Inchingolo AD, di Cosola M, Inchingolo AM, et al. Correlation between occlusal trauma and oral microbiota: a microbiological investigation[J]. J Biol Regul Homeost Agents, 2021, 35(2 ): 295-302.
16 Yoshinaga Y, Ukai T, Abe Y, et al. Expression of receptor activator of nuclear factor kappa B ligand relates to inflammatory bone resorption, with or without occlusal trauma, in rats[J]. J Periodontal Res, 2007, 42(5): 402-409.
17 Nakatsu S, Yoshinaga Y, Kuramoto A, et al. Occlusal trauma accelerates attachment loss at the onset of experimental periodontitis in rats[J]. J Periodontal Res, 2014, 49(3): 314-322.
18 Jia R, Yi YJ, Liu J, et al. Cyclic compression emerged dual effects on the osteogenic and osteoclastic status of LPS-induced inflammatory human periodontal ligament cells according to loading force[J]. BMC Oral Health, 2020, 20(1): 7.
19 El-Awady AR, Lapp CA, Gamal AY, et al. Human periodontal ligament fibroblast responses to compression in chronic periodontitis[J]. J Clin Periodontol, 2013, 40(7): 661-671.
20 Römer P, Köstler J, Koretsi V, et al. Endotoxins potentiate COX-2 and RANKL expression in compressed PDL cells[J]. Clin Oral Investig, 2013, 17(9): 2041-2048.
21 Li Y, Ling JQ, Jiang QZ. Inflammasomes in alveolar bone loss[J]. Front Immunol, 2021, 12: 691013.
22 DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer[J]. Immunol Rev, 2012, 246(1): 379-400.
23 Xu WZ, Lu Y, Yue JL, et al. Occlusal trauma inhi-bits osteoblast differentiation and bone formation through IKK-NF-κB signaling[J]. J Periodontol, 2020, 91(5): 683-692.
24 Lim WH, Liu B, Mah SJ, et al. Alveolar bone turnover and periodontal ligament width are controlled by Wnt[J]. J Periodontol, 2015, 86(2): 319-326.
25 Chang J, Sonoyama W, Wang Z, et al. Noncanonical Wnt-4 signaling enhances bone regeneration of me-senchymal stem cells in craniofacial defects through activation of p38 MAPK[J]. J Biol Chem, 2007, 282(42): 30938-30948.
26 Xu WZ, Lu Q, Qu MY, et al. Wnt4 regulates bone metabolism through IKK-NF-κB and ROCK signa-ling under occlusal traumatic periodontitis[J]. J Pe-riodontal Res, 2022, 57(3): 461-469.
27 Jia Q, Jiang WK, Ni LX. Down-regulated non-co-ding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells[J]. Arch Oral Biol, 2015, 60(2): 234-241.
28 Lu Q, Xu WZ, Liu LY, et al. Traumatic compressive stress inhibits osteoblast differentiation through long chain non-coding RNA Dancr[J]. J Periodontol, 2020, 91(11): 1532-1540.
29 Zhu L, Xu PC. Downregulated LncRNA-ANCR promotes osteoblast differentiation by targeting EZH2 and regulating Runx2 expression[J]. Biochem Biophys Res Commun, 2013, 432(4): 612-617.
30 Grigoriadis AE, Wang ZQ, Cecchini MG, et al. C-Fos: a key regulator of osteoclast-macrophage li-neage determination and bone remodeling[J]. S-cience, 1994, 266(5184): 443-448.
31 Wang Y, Wang HY, Ye QS, et al. Co-regulation of LPS and tensile strain downregulating osteogenicity via c-fos expression[J]. Life Sci, 2013, 93(1): 38-43.
32 Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical periodontology[J]. J Clin Periodontol, 2012, 39(3): 239-248.
33 Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal[J]. Nat Cell Biol, 2011, 13(8): 877-883.
34 Pan WY, Yang L, Li JL, et al. Traumatic occlusion aggravates bone loss during periodontitis and activates Hippo-YAP pathway[J]. J Clin Periodontol, 2019, 46(4): 438-447.
35 Wei W, Xue LL, Tan LY, et al. Inhibition of yes-associated protein dephosphorylation prevents aggravated periodontitis with occlusal trauma[J]. J Pe-riodontol, 2021, 92(7): 1036-1048.
36 Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy[J]. Pharmacol Ther, 2022, 232: 108010.
37 Cheng R, Liu W, Zhang R, et al. Porphyromonas gingivalis-derived lipopolysaccharide combines hypoxia to induce caspase-1 activation in periodontitis[J]. Front Cell Infect Microbiol, 2017, 7: 474.
38 Jiang MY, Shang ZZ, Zhang T, et al. Study on the role of pyroptosis in bone resorption induced by occlusal trauma with or without periodontitis[J]. J Pe-riodontal Res, 2022, 57(3): 448-460.
39 Tang KM, Chen W, Tang ZH, et al. Role of the Hippo-YAP/NF-κB signaling pathway crosstalk in regulating biological behaviors of macrophages under titanium ion exposure[J]. J Appl Toxicol, 2021, 41(4): 561-571.
40 Park HW, Kim YC, Yu B, et al. Alternative wnt signaling activates YAP/TAZ[J]. Cell, 2015, 162(4): 780-794.
41 Xiong JH, Almeida M, O'Brien CA. The YAP/TAZ transcriptional co-activators have opposing effects at different stages of osteoblast differentiation[J]. Bone, 2018, 112: 1-9.
42 廖安琪, 杨仁丽, 杨醒眉. 种植体周围炎的免疫应答机制及其影响因素的研究进展[J]. 口腔医学, 2021, 41(12): 1143-1147.
Liao AQ, Yang RL, Yang XM. Research progress of the mechanism of immune response and influencing factors of peri-implantitis[J]. Stomatology, 2021, 41(12): 1143-1147.
[1] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[2] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[3] Luo Xiaojie,Wang Dexu,Chen Xiaotao. Relationship between periodontitis and ferroptosis based on bioinformatics analysis [J]. Int J Stomatol, 2023, 50(6): 661-668.
[4] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[5] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[6] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[7] Xu Zhibo,Meng Xiuping.. Research progress on mechanism of Enterococcus faecalis escaping host immune defense [J]. Int J Stomatol, 2023, 50(5): 613-617.
[8] Yang Xiaoyu,Yuan Quan.. Research progress on the role of extravascular fibrinogen deposition in mucosal diseases [J]. Int J Stomatol, 2023, 50(4): 457-462.
[9] Huang Dingming, Zhang Lan, Man Yi. Biologic bases of nature tooth-related maxillary sinus floor elevation [J]. Int J Stomatol, 2023, 50(3): 251-262.
[10] Sun Jia,Han Ye,Hou Jianxia. Research progress on the role of interleukin-6-hepcidin signal axis in regulating the pathogenesis of periodontitis-associated anemia [J]. Int J Stomatol, 2023, 50(3): 329-334.
[11] Liang Zhiying,Zhao Yuanxi,Zhu Jiani,Su Qin.. Retrospective analysis of clinical data of 288 cases of endodontic microsurgery on anterior teeth [J]. Int J Stomatol, 2023, 50(2): 166-171.
[12] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[13] Li Qiong,Yu Weixian. Research progress on resveratrol for the treatment of periodontitis and its bioavailability [J]. Int J Stomatol, 2023, 50(1): 25-31.
[14] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[15] Zhou Jianpeng,Xie Xudong,Zhao Lei,Wang Jun.. Research progress on the roles and mechanisms of T-helper 17 cells and interleukin-17 in periodontitis [J]. Int J Stomatol, 2022, 49(5): 586-592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .