Int J Stomatol ›› 2023, Vol. 50 ›› Issue (1): 10-18.doi: 10.7518/gjkq.2023017
• Periodontitis • Previous Articles Next Articles
Yang Mengyao1(),Gao Xianling2,Deng Shuli1()
CLC Number:
1 | Pihlstrom BL, Michalowicz BS, Johnson NW. Perio-dontal diseases[J]. Lancet, 2005, 366(9499): 1809-1820. |
2 | Needleman I, Worthington HV, Giedrys-Leeper E, et al. WITHDRAWN: guided tissue regeneration for periodontal infra-bony defects[J]. Cochrane Database Syst Rev, 2019, 5: CD001724. |
3 | Shin YM, Yang HS, Chun HJ. Directional cell migration guide for improved tissue regeneration[J]. Adv Exp Med Biol, 2020, 1249: 131-140. |
4 | Abdelaziz D, Hefnawy A, Al-Wakeel E, et al. New biodegradable nanoparticles-in-nanofibers based me-mbranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity[J]. J Adv Res, 2021, 28: 51-62. |
5 | Chen GP, Kawazoe N. Porous scaffolds for regene-ration of cartilage, bone and osteochondral tissue[J]. Adv Exp Med Biol, 2018, 1058: 171-191. |
6 | Chen CC, Lee SY, Teng NC, et al. In vitro and in vivo studies of hydrophilic electrospun PLA95/β-TCP membranes for guided tissue regeneration (GTR) applications[J]. Nanomaterials (Basel), 2019, 9(4): E599. |
7 | Yao CH, Yang SP, Chen YS, et al. Electrospun poly(γ-glutamic acid)/β-tricalcium phosphate composite fibrous mats for bone regeneration[J]. Polymers (Basel), 2019, 11(2): E227. |
8 | Yang MY, Gao XL, Shen ZS, et al. Gelatin-assisted conglutination of aligned polycaprolactone nanofilms into a multilayered fibre-guiding scaffold for periodontal ligament regeneration[J]. RSC Adv, 2018, 9(1): 507-518. |
9 | Martinelli NM, Ribeiro MJG, Ricci R, et al. In vitro osteogenesis stimulation via nano-hydroxyapatite/carbon nanotube thin films on biomedical stainless steel[J]. Materials (Basel), 2018, 11(9): E1555. |
10 | Xue JJ, Wu T, Dai YQ, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chem Rev, 2019, 119(8): 5298-5415. |
11 | Esbah Tabaei PS, Asadian M, Ghobeira R, et al. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue enginee-ring[J]. Carbohydr Polym, 2021, 253: 117211. |
12 | He P, Zhong Q, Ge Y, et al. Dual drug loaded coa-xial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection[J]. Mater Sci Eng C Mater Biol Appl, 2018, 90: 549-556. |
13 | Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, et al. Capability of core-sheath polyvinyl alcohol-polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration[J]. Biomed Mater, 2021, 16(2): 025009. |
14 | Chen HW, Lin MF. Characterization, biocompatibility, and optimization of electrospun SF/PCL/CS composite nanofibers[J]. Polymers(Basel), 2020, 12(7): E1439. |
15 | Ren K, Wang Y, Sun T, et al. Electrospun PCL/gelatin composite nanofiber structures for effective gui-ded bone regeneration membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 324-332. |
16 | Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, et al. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative me-dicine[J]. Drug Dev Ind Pharm, 2017, 43(12): 1978-1988. |
17 | Shen RZ, Xu WH, Xue YX, et al. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup2): 419-430. |
18 | Zhang HL, Wang J, Wang KR, et al. A bilayered PLGA/multiwall carbon nanotubes/bacterial cellulose composite membrane for tissue regeneration of maxillary canine periodontal bone defects[J]. Mater Lett, 2018, 212: 118-121. |
19 | Jia J, Liu G, Guo ZX, et al. Preparation and characterization of soluble eggshell membrane protein/PLGA electrospun nanofibers for guided tissue regeneration membrane[J]. J Nanomater, 2012, 2012: 1-7. |
20 | Ao CH, Niu Y, Zhang XM, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering[J]. Int J Biol Macromol, 2017, 97: 568-573. |
21 | Miszuk JM, Xu T, Yao QQ, et al. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation[J]. Appl Mater Today, 2018, 10: 194-202. |
22 | Niu XL, Wang LF, Xu MJ, et al. Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered mem-branes for guided bone regeneration[J]. Carbohydr Polym, 2021, 260: 117769. |
23 | Lai GJ, Shalumon KT, Chen JP. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds[J]. Int J Nanomedicine, 2015, 10: 567-584. |
24 | Zhang S, Jiang GJ, Prabhakaran MP, et al. Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 687-696. |
25 | Ezati M, Safavipour H, Houshmand B, et al. Deve-lopment of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration[J]. Prog Biomater, 2018, 7(3): 225-237. |
26 | Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, et al. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80: 75-87. |
27 | Reise M, Wyrwa R, Müller U, et al. Release of me-tronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment[J]. Dent Mater, 2012, 28(2): 179-188. |
28 | Ho MH, Chang HC, Chang YC, et al. PDGF-metronidazole-encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration[J]. Int J Nanomedicine, 2017, 12: 5525-5535. |
29 | Ho MH, Claudia JC, Tai WC, et al. The treatment response of barrier membrane with amoxicillin-loaded nanofibers in experimental periodontitis[J]. J Perio-dontol, 2021, 92(6): 886-895. |
30 | Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 521-531. |
31 | Jia LN, Zhang X, Xu HY, et al. Development of a doxycycline hydrochloride-loaded electrospun nanofibrous membrane for GTR/GBR applications[J]. J Nanomater, 2016, 2016: 1-10. |
32 | Khan G, Yadav SK, Patel RR, et al. Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: Deve-lopment, optimization and its clinical implications[J]. Int J Biol Macromol, 2017, 103: 1311-1326. |
33 | Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, et al. Nanofibrous asymmetric collagen/curcumin mem-brane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration[J]. Sci Rep, 2020, 10(1): 18200. |
34 | Batool F, Morand DN, Thomas L, et al. Synthesis of a novel electrospun polycaprolactone scaffold functionalized with ibuprofen for periodontal regeneration: an in vitro and in vivo study[J]. Materials (Basel), 2018, 11(4): E580 |
35 | Farooq A, Yar M, Khan AS, et al. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 104-113. |
36 | Costa Salles TH, Volpe-Zanutto F, de Oliveira Sousa IM, et al. Electrospun PCL-based nanofibers Arrabidaea chica Verlot-Pterodon pubescens Benth loaded: synergic effect in fibroblast formation[J]. Biomed Mater, 2020, 15(6): 065001. |
37 | Raja IS, Preeth DR, Vedhanayagam M, et al. Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration[J]. Biomater Res, 2021, 25(1): 29. |
38 | Malekpour Z, Akbari V, Varshosaz J, et al. Preparation and characterization of poly(lactic-co-glycolic acid) nanofibers containing simvastatin coated with hyaluronic acid for using in periodontal tissue engineering[J]. Biotechnol Prog, 2021, 37(6): e3195. |
39 | Murali VP, Fujiwara T, Gallop C, et al. Modified electrospun chitosan membranes for controlled release of simvastatin[J]. Int J Pharm, 2020, 584: 119438. |
40 | Wang SF, Wu YC, Cheng YC, et al. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue rege-neration application[J]. Polymers (Basel), 2021, 13(11): 1740. |
41 | Federico S, Pitarresi G, Palumbo FS, et al. Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: fabrication, characterization and in vitro osteoinductive properties[J]. Colloids Surf B Biointerfaces, 2021, 197: 111438. |
42 | Ko SW, Lee JY, Rezk AI, et al. In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization[J]. Carbohydr Polym, 2021, 269: 118255. |
43 | Niu CG, Yuan KY, Ma R, et al. Gold nanoparticles promote osteogenic differentiation of human perio-dontal ligament stem cells via the p38 MAPK signaling pathway[J]. Mol Med Rep, 2017, 16(4): 4879-4886. |
44 | Jadhav K, Hr R, Deshpande S, et al. Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry[J]. Mater Sci Eng C Mater Biol Appl, 2018, 93: 664-670. |
45 | Terranova L, Dragusin DM, Mallet R, et al. Repair of calvarial bone defects in mice using electrospun polystyrene scaffolds combined with β-TCP or gold nanoparticles[J]. Micron, 2017, 93: 29-37. |
46 | Tsai SW, Hsu YW, Pan WL, et al. The effect of strontium-substituted hydroxyapatite nanofibrous matrix on osteoblast proliferation and differentiation[J]. Membranes (Basel), 2021, 11(8): 624. |
47 | Münchow EA, Pankajakshan D, Albuquerque MT, et al. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering[J]. Clin Oral Investig, 2016, 20(8): 1921-1933. |
48 | Nasajpour A, Ansari S, Rinoldi C, et al. A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics[J]. Adv Funct Mater, 2018, 28(3): 1703437. |
49 | Ekambaram R, Paraman V, Raja L, et al. Design and development of electrospun SPEEK incorporated with aminated zirconia and curcumin nanofibers for periodontal regeneration[J]. J Mech Behav Biomed Mater, 2021, 123: 104796. |
50 | Boda SK, Almoshari Y, Wang HJ, et al. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration[J]. Acta Biomater, 2019, 85: 282-293. |
51 | da Silva TN, Gonçalves RP, Rocha CL, et al. Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 97: 602-612. |
52 | Cheng G, Ma X, Li JM, et al. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering[J]. Int J Pharm, 2018, 547(1/2): 656-666. |
53 | Yin LH, Yang SH, He MM, et al. Physicochemical and biological characteristics of BMP-2/IGF-1-loa-ded three-dimensional coaxial electrospun fibrous membranes for bone defect repair[J]. J Mater Sci Mater Med, 2017, 28(6): 94. |
54 | Wang C, Lu WW, Wang M. Multifunctional fibrous scaffolds for bone regeneration with enhanced vascularization[J]. J Mater Chem B, 2020, 8(4): 636-647. |
55 | Zigdon-Giladi H, Khutaba A, Elimelech R, et al. VEGF release from a polymeric nanofiber scaffold for improved angiogenesis[J]. J Biomed Mater Res A, 2017, 105(10): 2712-2721. |
56 | Campos DM, Gritsch K, Salles V, et al. Surface entrapment of fibronectin on electrospun PLGA scaffolds for periodontal tissue engineering[J]. Biores Open Access, 2014, 3(3): 117-126. |
57 | Lee JH, Park JH, El-Fiqi A, et al. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface[J]. Acta Biomater, 2014, 10(6): 2750-2761. |
58 | Boda SK, Fischer NG, Ye Z, et al. Dual oral tissue adhesive nanofiber membranes for pH-responsive delivery of antimicrobial peptides[J]. Biomacromo-lecules, 2020, 21(12): 4945-4961. |
59 | Wu JN, Zheng A, Liu Y, et al. Enhanced bone rege-neration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide[J]. Int J Nanome-dicine, 2019, 14: 733-751. |
60 | Su W, Wang ZY, Jiang J, et al. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane[J]. Int J Nanomedicine, 2019, 14: 1835-1847. |
61 | Zhou TF, Li G, Lin SY, et al. Electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene oxide scaffold: enhanced properties and promoted in vivo bone repair in rats[J]. ACS Appl Mater Interfaces, 2017, 9(49): 42589-42600. |
62 | Svyntkivska M, Makowski T, Piorkowska E, et al. Modification of polylactide nonwovens with carbon nanotubes and ladder poly(silsesquioxane)[J]. Molecules, 2021, 26(5): 1353. |
63 | Wang SF, Wu YC, Cheng YC, et al. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue rege-neration application[J]. Polymers (Basel), 2021, 13(11): 1740. |
64 | Kennedy KM, Bhaw-Luximon A, Jhurry D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance[J]. Acta Biomater, 2017, 50: 41-55. |
65 | Lowery JL, Datta N, Rutledge GC. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats[J]. Biomaterials, 2010, 31(3): 491-504. |
66 | Zhong SP, Zhang YZ, Lim CT. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review[J]. Tissue Eng Part B Rev, 2012, 18(2): 77-87. |
67 | Xie J, Shen HQ, Yuan GY, et al. The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111787. |
68 | Chen G, Chen JL, Yang B, et al. Combination of aligned PLGA/gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration[J]. Biomaterials, 2015, 52: 56-70. |
69 | Jiang WL, Li L, Zhang D, et al. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium[J]. Acta Biomater, 2015, 25: 240-252. |