Int J Stomatol ›› 2023, Vol. 50 ›› Issue (1): 10-18.doi: 10.7518/gjkq.2023017

• Periodontitis • Previous Articles     Next Articles

Application of electrospun nanofibers in periodontal regeneration

Yang Mengyao1(),Gao Xianling2,Deng Shuli1()   

  1. 1.Dept. of Cariology and Endodontics, Stomatological Hospital, School of Stomatology, Zhejiang University School of Me-dicine & Clinical Research Center for Oral Diseases of Zhejiang Province & Key Laboratory of Oral Biomedical Research of Zhejiang Province & Cancer Center of Zhejiang University, Hangzhou 310006, China
    2.Dept. of Cariology and Endodontics, Guanghua Hospital of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2022-05-16 Revised:2022-09-28 Online:2023-01-01 Published:2023-01-09
  • Contact: Shuli Deng E-mail:7519031@zju.edu.cn;dengshuli@zju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82001096);Research and Development Plan of Zhejiang Province’s “Top Soldiers” and “Leading Geese”(2022C03060)

Abstract:

Nanofibers are prepared by electrospinning technique through a high voltage electric field. These materials have good biocompatibility and biodegradability. Simultaneously, materials with high porosity and high specific surface area can simulate the structure of the natural extracellular matrix and thus promote cell proliferation and differentiation. The biological properties of materials can be optimized by loading inorganic particles, drugs, and other active substances. Therefore, electrospinning nanofibers have been widely used in the regeneration of bone, cartilage, nerve, skin, and other tissues, and are also popular materials in periodontal tissue regeneration. Hence, this review briefly describes the preparation process of electrospun nanofibers, and introduces their application in periodontal tissue regeneration from the aspects of matrix composition, biological activity, and structure, aiming to provide a reference for its further research and development.

Key words: electrospinning, nanofibers, periodontal regeneration, biological activity, microstructure

CLC Number: 

  • R 781.4

TrendMD: 

Tab 1

Various electrospun nanofibers with optimized biological activity"

种类活性成分优点缺点或需改善之处
生物陶瓷材料nHAp促进成骨混纺:需探索合适的比例;涂层:需控制涂层厚度、增加结合强度
β-TCP改善纤维力学性能,促进成骨需提高孔隙率、促进细胞黏附
药物需改善缓释效果、提高药效和生物活性
抗菌药物甲硝唑、氨苄西林、阿莫西林、盐酸四环素、盐酸强力霉素、替尼唑抑制牙周病菌
非甾体抗炎药阿司匹林、布洛芬、吡罗西康抑制炎症反应
植物提取物姜黄素、芹黄素、绿茶多酚、毛紫檀等抗炎、抗氧化
其他辛伐他汀、地塞米松、雷尼酸锶调节骨再生,促进成骨
金属及金属氧化物AgNPs抗菌需确认安全性
AuNPs促进成骨骨诱导性能较弱
Sr促进成骨需提高生物活性
CaO促进成骨降低力学性能
ZnO促进成骨、抗菌需确认安全性
胺基化的ZrO2增加强度、生物相容性佳需确认安全性
蛋白
生长因子BMPs促进成骨需改善缓释曲线、提高生物活性
PDGF、TGF、IGF促进创伤愈合及成骨
VEGF促进血管再生
功能蛋白AMPs抗菌需提高生物活性
FN促进细胞识别需改善包被方法
OCN促进矿化需体内试验验证效果
新型碳纳米材料GO改善力学性能、促进成骨体内不能降解
MWCNTs提高纤维的强度和韧性、骨传导性
1 Pihlstrom BL, Michalowicz BS, Johnson NW. Perio-dontal diseases[J]. Lancet, 2005, 366(9499): 1809-1820.
2 Needleman I, Worthington HV, Giedrys-Leeper E, et al. WITHDRAWN: guided tissue regeneration for periodontal infra-bony defects[J]. Cochrane Database Syst Rev, 2019, 5: CD001724.
3 Shin YM, Yang HS, Chun HJ. Directional cell migration guide for improved tissue regeneration[J]. Adv Exp Med Biol, 2020, 1249: 131-140.
4 Abdelaziz D, Hefnawy A, Al-Wakeel E, et al. New biodegradable nanoparticles-in-nanofibers based me-mbranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity[J]. J Adv Res, 2021, 28: 51-62.
5 Chen GP, Kawazoe N. Porous scaffolds for regene-ration of cartilage, bone and osteochondral tissue[J]. Adv Exp Med Biol, 2018, 1058: 171-191.
6 Chen CC, Lee SY, Teng NC, et al. In vitro and in vivo studies of hydrophilic electrospun PLA95/β-TCP membranes for guided tissue regeneration (GTR) applications[J]. Nanomaterials (Basel), 2019, 9(4): E599.
7 Yao CH, Yang SP, Chen YS, et al. Electrospun poly(γ-glutamic acid)/β-tricalcium phosphate composite fibrous mats for bone regeneration[J]. Polymers (Basel), 2019, 11(2): E227.
8 Yang MY, Gao XL, Shen ZS, et al. Gelatin-assisted conglutination of aligned polycaprolactone nanofilms into a multilayered fibre-guiding scaffold for periodontal ligament regeneration[J]. RSC Adv, 2018, 9(1): 507-518.
9 Martinelli NM, Ribeiro MJG, Ricci R, et al. In vitro osteogenesis stimulation via nano-hydroxyapatite/carbon nanotube thin films on biomedical stainless steel[J]. Materials (Basel), 2018, 11(9): E1555.
10 Xue JJ, Wu T, Dai YQ, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chem Rev, 2019, 119(8): 5298-5415.
11 Esbah Tabaei PS, Asadian M, Ghobeira R, et al. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue enginee-ring[J]. Carbohydr Polym, 2021, 253: 117211.
12 He P, Zhong Q, Ge Y, et al. Dual drug loaded coa-xial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection[J]. Mater Sci Eng C Mater Biol Appl, 2018, 90: 549-556.
13 Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, et al. Capability of core-sheath polyvinyl alcohol-polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration[J]. Biomed Mater, 2021, 16(2): 025009.
14 Chen HW, Lin MF. Characterization, biocompatibility, and optimization of electrospun SF/PCL/CS composite nanofibers[J]. Polymers(Basel), 2020, 12(7): E1439.
15 Ren K, Wang Y, Sun T, et al. Electrospun PCL/gelatin composite nanofiber structures for effective gui-ded bone regeneration membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 324-332.
16 Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, et al. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative me-dicine[J]. Drug Dev Ind Pharm, 2017, 43(12): 1978-1988.
17 Shen RZ, Xu WH, Xue YX, et al. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup2): 419-430.
18 Zhang HL, Wang J, Wang KR, et al. A bilayered PLGA/multiwall carbon nanotubes/bacterial cellulose composite membrane for tissue regeneration of maxillary canine periodontal bone defects[J]. Mater Lett, 2018, 212: 118-121.
19 Jia J, Liu G, Guo ZX, et al. Preparation and characterization of soluble eggshell membrane protein/PLGA electrospun nanofibers for guided tissue regeneration membrane[J]. J Nanomater, 2012, 2012: 1-7.
20 Ao CH, Niu Y, Zhang XM, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering[J]. Int J Biol Macromol, 2017, 97: 568-573.
21 Miszuk JM, Xu T, Yao QQ, et al. Functionalization of PCL-3D electrospun nanofibrous scaffolds for improved BMP2-induced bone formation[J]. Appl Mater Today, 2018, 10: 194-202.
22 Niu XL, Wang LF, Xu MJ, et al. Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered mem-branes for guided bone regeneration[J]. Carbohydr Polym, 2021, 260: 117769.
23 Lai GJ, Shalumon KT, Chen JP. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds[J]. Int J Nanomedicine, 2015, 10: 567-584.
24 Zhang S, Jiang GJ, Prabhakaran MP, et al. Evaluation of electrospun biomimetic substrate surface-decorated with nanohydroxyapatite precipitation for osteoblasts behavior[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 687-696.
25 Ezati M, Safavipour H, Houshmand B, et al. Deve-lopment of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration[J]. Prog Biomater, 2018, 7(3): 225-237.
26 Masoudi Rad M, Nouri Khorasani S, Ghasemi-Mobarakeh L, et al. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80: 75-87.
27 Reise M, Wyrwa R, Müller U, et al. Release of me-tronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment[J]. Dent Mater, 2012, 28(2): 179-188.
28 Ho MH, Chang HC, Chang YC, et al. PDGF-metronidazole-encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration[J]. Int J Nanomedicine, 2017, 12: 5525-5535.
29 Ho MH, Claudia JC, Tai WC, et al. The treatment response of barrier membrane with amoxicillin-loaded nanofibers in experimental periodontitis[J]. J Perio-dontol, 2021, 92(6): 886-895.
30 Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 521-531.
31 Jia LN, Zhang X, Xu HY, et al. Development of a doxycycline hydrochloride-loaded electrospun nanofibrous membrane for GTR/GBR applications[J]. J Nanomater, 2016, 2016: 1-10.
32 Khan G, Yadav SK, Patel RR, et al. Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: Deve-lopment, optimization and its clinical implications[J]. Int J Biol Macromol, 2017, 103: 1311-1326.
33 Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, et al. Nanofibrous asymmetric collagen/curcumin mem-brane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration[J]. Sci Rep, 2020, 10(1): 18200.
34 Batool F, Morand DN, Thomas L, et al. Synthesis of a novel electrospun polycaprolactone scaffold functionalized with ibuprofen for periodontal regeneration: an in vitro and in vivo study[J]. Materials (Basel), 2018, 11(4): E580
35 Farooq A, Yar M, Khan AS, et al. Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 104-113.
36 Costa Salles TH, Volpe-Zanutto F, de Oliveira Sousa IM, et al. Electrospun PCL-based nanofibers Arrabidaea chica Verlot-Pterodon pubescens Benth loaded: synergic effect in fibroblast formation[J]. Biomed Mater, 2020, 15(6): 065001.
37 Raja IS, Preeth DR, Vedhanayagam M, et al. Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration[J]. Biomater Res, 2021, 25(1): 29.
38 Malekpour Z, Akbari V, Varshosaz J, et al. Preparation and characterization of poly(lactic-co-glycolic acid) nanofibers containing simvastatin coated with hyaluronic acid for using in periodontal tissue engineering[J]. Biotechnol Prog, 2021, 37(6): e3195.
39 Murali VP, Fujiwara T, Gallop C, et al. Modified electrospun chitosan membranes for controlled release of simvastatin[J]. Int J Pharm, 2020, 584: 119438.
40 Wang SF, Wu YC, Cheng YC, et al. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue rege-neration application[J]. Polymers (Basel), 2021, 13(11): 1740.
41 Federico S, Pitarresi G, Palumbo FS, et al. Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: fabrication, characterization and in vitro osteoinductive properties[J]. Colloids Surf B Biointerfaces, 2021, 197: 111438.
42 Ko SW, Lee JY, Rezk AI, et al. In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization[J]. Carbohydr Polym, 2021, 269: 118255.
43 Niu CG, Yuan KY, Ma R, et al. Gold nanoparticles promote osteogenic differentiation of human perio-dontal ligament stem cells via the p38 MAPK signaling pathway[J]. Mol Med Rep, 2017, 16(4): 4879-4886.
44 Jadhav K, Hr R, Deshpande S, et al. Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry[J]. Mater Sci Eng C Mater Biol Appl, 2018, 93: 664-670.
45 Terranova L, Dragusin DM, Mallet R, et al. Repair of calvarial bone defects in mice using electrospun polystyrene scaffolds combined with β-TCP or gold nanoparticles[J]. Micron, 2017, 93: 29-37.
46 Tsai SW, Hsu YW, Pan WL, et al. The effect of strontium-substituted hydroxyapatite nanofibrous matrix on osteoblast proliferation and differentiation[J]. Membranes (Basel), 2021, 11(8): 624.
47 Münchow EA, Pankajakshan D, Albuquerque MT, et al. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering[J]. Clin Oral Investig, 2016, 20(8): 1921-1933.
48 Nasajpour A, Ansari S, Rinoldi C, et al. A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics[J]. Adv Funct Mater, 2018, 28(3): 1703437.
49 Ekambaram R, Paraman V, Raja L, et al. Design and development of electrospun SPEEK incorporated with aminated zirconia and curcumin nanofibers for periodontal regeneration[J]. J Mech Behav Biomed Mater, 2021, 123: 104796.
50 Boda SK, Almoshari Y, Wang HJ, et al. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration[J]. Acta Biomater, 2019, 85: 282-293.
51 da Silva TN, Gonçalves RP, Rocha CL, et al. Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2019, 97: 602-612.
52 Cheng G, Ma X, Li JM, et al. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering[J]. Int J Pharm, 2018, 547(1/2): 656-666.
53 Yin LH, Yang SH, He MM, et al. Physicochemical and biological characteristics of BMP-2/IGF-1-loa-ded three-dimensional coaxial electrospun fibrous membranes for bone defect repair[J]. J Mater Sci Mater Med, 2017, 28(6): 94.
54 Wang C, Lu WW, Wang M. Multifunctional fibrous scaffolds for bone regeneration with enhanced vascularization[J]. J Mater Chem B, 2020, 8(4): 636-647.
55 Zigdon-Giladi H, Khutaba A, Elimelech R, et al. VEGF release from a polymeric nanofiber scaffold for improved angiogenesis[J]. J Biomed Mater Res A, 2017, 105(10): 2712-2721.
56 Campos DM, Gritsch K, Salles V, et al. Surface entrapment of fibronectin on electrospun PLGA scaffolds for periodontal tissue engineering[J]. Biores Open Access, 2014, 3(3): 117-126.
57 Lee JH, Park JH, El-Fiqi A, et al. Biointerface control of electrospun fiber scaffolds for bone regeneration: engineered protein link to mineralized surface[J]. Acta Biomater, 2014, 10(6): 2750-2761.
58 Boda SK, Fischer NG, Ye Z, et al. Dual oral tissue adhesive nanofiber membranes for pH-responsive delivery of antimicrobial peptides[J]. Biomacromo-lecules, 2020, 21(12): 4945-4961.
59 Wu JN, Zheng A, Liu Y, et al. Enhanced bone rege-neration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide[J]. Int J Nanome-dicine, 2019, 14: 733-751.
60 Su W, Wang ZY, Jiang J, et al. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane[J]. Int J Nanomedicine, 2019, 14: 1835-1847.
61 Zhou TF, Li G, Lin SY, et al. Electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/graphene oxide scaffold: enhanced properties and promoted in vivo bone repair in rats[J]. ACS Appl Mater Interfaces, 2017, 9(49): 42589-42600.
62 Svyntkivska M, Makowski T, Piorkowska E, et al. Modification of polylactide nonwovens with carbon nanotubes and ladder poly(silsesquioxane)[J]. Molecules, 2021, 26(5): 1353.
63 Wang SF, Wu YC, Cheng YC, et al. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue rege-neration application[J]. Polymers (Basel), 2021, 13(11): 1740.
64 Kennedy KM, Bhaw-Luximon A, Jhurry D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: implications for scaffold design and performance[J]. Acta Biomater, 2017, 50: 41-55.
65 Lowery JL, Datta N, Rutledge GC. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats[J]. Biomaterials, 2010, 31(3): 491-504.
66 Zhong SP, Zhang YZ, Lim CT. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review[J]. Tissue Eng Part B Rev, 2012, 18(2): 77-87.
67 Xie J, Shen HQ, Yuan GY, et al. The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111787.
68 Chen G, Chen JL, Yang B, et al. Combination of aligned PLGA/gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration[J]. Biomaterials, 2015, 52: 56-70.
69 Jiang WL, Li L, Zhang D, et al. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium[J]. Acta Biomater, 2015, 25: 240-252.
[1] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[2] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[3] Wang Shiqi,Chang Yaqin,Chen Bin,Tan Baochun,Ni Yanhong. Comparison of clinical outcomes between using bone graft alone and the combination of bone graft with membrane for periodontal regeneration therapy: a systematic review and Meta-analysis [J]. Int J Stomatol, 2020, 47(6): 644-651.
[4] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
[5] Wu Xiaonan,Ma Ning,Hou Jianxia. Research progress of exosomes derived from different stem cells in periodontal regeneration [J]. Int J Stomatol, 2020, 47(2): 146-151.
[6] Xingying Qi,Guoying Zheng,Lei. Sui. Effects of titanium implant surface topographies on osteogenesis [J]. Inter J Stomatol, 2018, 45(5): 527-533.
[7] Jiang Yuxi1, 2, Liu Shutai1, 2. Advances in periodontal regeneration with periodontal ligament cell sheet technique [J]. Inter J Stomatol, 2017, 44(2): 204-208.
[8] Liu Kun, Hou Benxiang.. Biological activity of Enterococcus faecalis and Streptococcus mutans lipoteichoic acid [J]. Inter J Stomatol, 2017, 44(1): 118-124.
[9] Du Linling, Feng Juan.. Human neutrophil peptide-1-3 and its relationship with caries risk [J]. Inter J Stomatol, 2015, 42(6): 699-702.
[10] Yang Hong, Dong Qiang. Role of tissue engineering cell sheet in periodontal tissue regeneration [J]. Inter J Stomatol, 2014, 41(3): 324-328.
[11] JIANG Li, LIAO Yun-mao, LI Wei.. Influence of the microstructure and composites on the optical property of dental all ceramics [J]. Inter J Stomatol, 2010, 37(6): 699-702.
[12] ZHANG Jing- chao, MO Anchun. . Effect of Sur face Microstructur e of Titanium Implant on Osteoblasts Viability [J]. Inter J Stomatol, 2007, 34(03): 207-209.
[13] DING Pei- hui, CHEN Li- li.. Periodontal Regener ation by Gene Ther apy [J]. Inter J Stomatol, 2007, 34(02): 97-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .